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ABSTRACT
In recent years, inducing a desired behaviour in learning agents by
exercising some degree of influence over their experiences has re-
ceived extensive treatment. While there are several offshoots of this
problem, it is commonly viewed within the framework of Curriculum
Learning: devising a sequence of tasks that gradually induce the de-
sired behaviour. Majority of these methods assume value alignment
between the teacher and the learner, though some notable exceptions
exist. One such exception is the method of Behaviour Cultivation
(BC) that induces a desired behaviour by tweaking the environment
dynamics. BC does not assume value alignment, and has been shown
to be indispensable, i.e., not reproducible by other teaching methods.
Unfortunately, classical BC is an open loop method, i.e., blind to the
progress of the learner, and lacks the ability to teach group of agents.

In this paper, we combine the Behaviour Cultivation core with the
recent advances of Curriculum MDPs. This allows us to address sev-
eral shortcomings of the classical BC, while preserving its strengths,
such as the freedom from the teacher-learner value alignment. Our
model exploits the knowledge of the learner population adaptation
process to induce and proliferate a desired behaviour throughout the
population. We term our model BC-MDP, and experimentally show
its effectiveness, and retention of key positive features of both BC
and Curriculum-MDP.
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1 INTRODUCTION
Thaler [28] views a "nudge" as a way to predictably alter people’s
behaviour by controlling its context. Social change [18], government
intervention [19], health care [4], economics [9] and even human-
computer interaction [8] have enjoyed its use. Generally though,
"nudges" are manually designed based on psychological studies.
However, the advent of big data technologies brought an increased
pressure to automate nudge generation. In this respect, the proximity
of human reasoning to that of Reinforcement Learning (RL) agents
(see e.g., [14, 33]), suggests the use of RL teaching paradigms to
obtain "nudges".

Majority of RL teaching paradigms can be roughly grouped into
three categories: by demonstration or advice (e.g., [2, 3, 15]), by
incentives (e.g., [17, 32]), and by environment dynamics design
(e.g., [16, 20]). The first two categories explicitly build their ap-
proaches on the assumption that the learner has the motivation
or interest to accept the teacher’s input. However, in many social
change scenarios, this assumption is difficult to satisfy. In contrast,

environment design approaches need no such assumption. E.g.,
in Behaviour Cultivation (BC) [24], the teacher and the learner
may differ in behaviour preferences, i.e., no value alignment is as-
sumed. Furthermore, BC is a conservative and seeks to minimize
environment changes. Alas, unlike its value-aligned counterparts
(e.g., Curriculum-MDP [21]), BC constructs an open-loop control
sequence of environment modifications, disregarding the learner’s
actual progress.

In this paper, to achieve a teaching method that is both free of
value-alignment and closed-loop, we merge the cores of the Be-
haviour Cultivation and the Curriculum-MDP approaches. Naturally
termed Behaviour Cultivation Markov Decision Process (BC-MDP),
our model also retains the conservative view of environment modifi-
cations, and seeks minimal effective changes. Motivated by Massive
Open Online Courses (MOOCs), we further generalize our teach-
ing by considering the cost of its simultaneous, but independent,
application to multiple learners. To summarise, BC-MDP supports
the following features simultaneously: a) ability to balance teach-
ing effort, i.e., the amount of environment modifications, with the
effectiveness of this modification to drive the learner’s behaviour
change (i.e., teaching success); b) considering the above balance in
the context of a population of learners; c) providing means to control
the structural/cognitive complexity of the teaching strategy.

The rest of the paper is organized as follows. Section 2 intro-
duces related works. Sections 3 and 4 gradually build and formalise
Behaviour Cultivation MDP model. Experimental support is given
in Section 5, followed by limitation and future work discussion in
Section 6. Section 7 concludes the work.

2 RELATED WORK
A reinforcement learning agent’s behaviour stems solely from its
experience in the environment that it inhabits, i.e., how the environ-
ment state changes under the agent’s action and the reward obtained
as the result. The research interest here lies in studying the effect that
limited controls of that experience can have on the agent’s learned
behaviour.

For instance, Curriculum Learning (CL) [6] assumes that no fine-
grain control of a single environment is available, and devises a
training sequence of distinct environments with transferable experi-
ences. The sequence terminates with a target environment that the
agent is actually supposed to inhabit. The design of the sequence,
either manual [20, 23] or automated [27], hastens the agent in ob-
taining the set of experiences most relevant for optimal behaviour in
the target environment. Furthermore, it is possible to construct the
training sequence on-the-fly, responding to the actual progress of the
learner [21]. This is achieved by treating the learner as a dynamic
system in which the state is the learner’s behaviour and the actions



are the training sequence elements. This latter view we borrow to
construct our BC-MDP model.

Now, it is not always possible to entirely redesign the environ-
ment, and only limited access to its elements is available to the
teacher to form the learner’s experiences. For instance, Zhang [30–
32] considers limited access to the learner’s reward function. The
teacher wants the learner to adopt a particular behaviour, and seeks
the smallest possible change to the learner’s reward to incentivize
the behaviour adoption. In particular, this means that the teacher
pays some cost for the learner’s performance. This aspect is absent
from CL methods, but is a part of our BC-MDP model.

Reward modulation, however, is neither sufficient for all tasks nor
universally available. Fortunately, we can also influence learner’s
experience by modulating the environment’s transition function, i.e.,
how the environment changes in response to the learner’s action.
This entails access to the hyper-parameters of the environment dy-
namics, and has been used in both [16] and [24]. The former searches
through the space of possible hyper-parameter setting to facilitate
the learner’s attainment of its goals. This search changes the environ-
ment off-line wrt the learner’s experience gathering. In contrast, the
latter work, the Behaviour Cultivation method, designs a sequence
of hyper-parameter changes that take effect during the learner’s
progress, much in the same way that CL methods do. Notably, both
of the aforementioned works consider that changing environment
hyper-parameters comes at a cost, and seek to minimize it. Our
BC-MDP model follows suit.

Finally, we must position our work with respect to teaching multi-
ple agents. Some examples of doing so exist. E.g., [10, 22] take the
route of accessing the reward function of the system, while [26, 29]
adopt the CL approach with its strong environment redesign ap-
proach. We are not aware of any works that address this issue by
modulating environment dynamics, i.e., the teaching method that
[16, 24] and our BC-MDP model adopt. Since our model already
combines several non-trivial modelling decisions, at this time, we
have decided to address only one aspect of teaching a multi-agent
system. Specifically, we focus on the need to balance the teaching
effort when applied to multiple independent learners. Intuitively,
we design a MOOC server that administers multiple copies of an
interactive scenario.

3 INTUITIVE MODEL SUMMARY
We formulate the problem as a two-level interactive MDP archi-
tecture. In this architecture, the learning process is formulated as
an Markov Decision Process (MDP) while the teaching process is
designed based on the Curriculum-MDP. As shown in Figure 1, the
learner acts in the environment to explore an optimal behavior policy
while the teacher acts on the environment dynamics in response to
the learners’ specific behaviour type. In other words, to induce learn-
ers to follow a desired behaviour, the teacher considers the behaviour
distribution over the learner population, and accordingly designs a
teaching strategy to modulate environment dynamics. In this work,
the teaching model aims to generate a time-dependent mapping from
learners’ behaviour to teacher’s action, at the same time, achieve a
balance between teaching effort with teaching accuracy.

4 FORMAL MODEL
In this section, we formally define the learner’s and the teacher’s
modus operandi, and derive the teacher’s optimisation criteria. To-
gether they form our Behaviour-Cultivation MDP (BC-MDP) model.

4.1 BC-MDP: Learner-Teacher Interaction Model
We follow the Curriculum MDP (CMDP) approach [21], as far as the
structure of the interaction between the teacher and the learner is con-
cerned. In particular, we view the learner as a reinforcement learning
agent that faces a Markovian environment, and the teacher as an
algorithm that controls the hyper-parameters of that environment.
However, we significantly differ from CMDP in what parameters of
the environment are accessible to the teacher, and the purpose of the
teacher’s actions. Formally, the following is assumed.

4.1.1 Learner’s Environment. Our assumption is that a learner
follows some RL algorithms and interacts with a Markovian envi-
ronment captured by the standard tuple < 𝑆,𝐴,𝑇 , 𝑟, 𝑝0 >, where: 𝑆 is
the set of environment states; 𝑝0 is a distribution over the set 𝑆 from
which the initial state of the environment is sampled; 𝐴 is the set
of actions available to the learner; 𝑟 : 𝑆 ×𝐴 × 𝑆 → R is the reward
function, where 𝑟 (𝑠, 𝑎, 𝑠 ′) is the benefit extracted by the learner by
performing action 𝑎 in state 𝑠 and causing the environment to transit
to state 𝑠 ′; and, finally, 𝑇 is the probabilistic state transition function
with hyper-parameters coming from some space𝑈 . The latter needs
a few more details. We assume that the transition function has the
form 𝑇 : 𝑈 → Δ(𝑆)𝑆×𝐴, so that 𝑇 (𝑠 ′ |𝑠, 𝑎;𝑢) denotes the probability
of the environment state changing from 𝑠 to 𝑠 ′, given that the learner
selected action 𝑎 and the transition was parameterised by 𝑢 ∈ 𝑈 .

The goal of the learner is to acquire a behaviour policy, i.e.,
a probabilistic mapping from environment states to actions, that
maximises the expected cumulative reward. We assume that the
policy can be parameterised, and thus the probability of the learner
taking action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 is denoted by 𝜋 (𝑎 |𝑠;𝜃 ), where 𝜃 ∈
Θ are policy parameters that come from some parameter space Θ. We
note that the learner is not aware of environment transition function
hyper-parameters, or their changes during its learning progress.

Learner

Environment

Learner

Teacher
Teaching
actions

Learners'
behaviour cost

s sa ar r

Figure 1: Two-level interactive MDP architecture: learning pro-
cess is an MDP where a, s, r represent learner’s action, state
and reward; teaching process is a higher-level MDP where state
space consists of learners’ policies and action space includes all
the teaching actions.
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4.1.2 Teacher’s Environment. We assume that the teacher
has full access to the hyper-parameters of a learner’s environment,
and can modulate them with the confines of the set 𝑈 . In addi-
tion, we consider it possible for the teacher to have access to the
learner’s policy at regular intervals, but not to modify them directly.
Such would be the case of MOOCs, where the skills of students
(their behaviour policy) are obtained by regular testing. Following,
Curriculum-MDPs [21], we thus formulate the teacher’s environ-
ment as a higher-level Markovian process. Formally, it is defined by
the tuple < Θ,𝑈 , 𝐹, 𝐷0, 𝜃∗,𝐶𝑜𝑠𝑡 >, where:

• Θ, the space of learner policy parameterisations, is treated
here as the state space over which the teacher operates. We
denote by 𝜃∗ ∈ Θ a policy that the teacher considers idealistic
in some sense.

• 𝐷0 is a distribution over Θ so that 𝐷0 (𝜃 ) is the probability
that a learner’s initial behaviour is 𝜃 ∈ Θ.

• 𝑈 , the space of all hyper-parameters of the learner’s environ-
ment, becomes the action space of the teacher. We assume
that some 𝑢0 exists that describes some "natural" environment
response.

• 𝐹 is the teacher’s environment probabilistic transition func-
tion, and it captures how a learner changes its behaviour. Es-
sentially, 𝐹 (𝜃 ′ |𝜃,𝑢) is the probability that the learner shifts its
behaviour parameter from 𝜃 to 𝜃 ′ while inhabiting a learner’s
environment with hyper-parameter 𝑢 ∈ 𝑈 .

• 𝐶𝑜𝑠𝑡 : Θ ×𝑈 → R is a function that represents the teaching
cost, and combines the teaching effort and the teaching suc-
cess (as we describe later in Section 4.2 and Table 1), dictated
by the hyper-parameters of the learner’s environment that the
teacher chose to enforce, and how this effected the learner’s
behaviour parameters.

Unlike the learner, we assume that the teacher has only a finite
number of teaching iterations to "tune" the learner’s environment,
which we denote by 𝑇𝑚𝑎𝑥 . Furthermore, rather than treating 𝐷0 as
uncertainty in the initial position of a single learner, we treat it as
a statistic of a population of learners. That is, the teacher is facing
a large number of learners simultaneously, with full knowledge of
the current behaviour policy of each one of them, and the overall
statistic of those policies given by 𝐷0. We assume that the teacher
wants to minimize the total expected teaching cost over the finite
horizon. To this end, we allow the teacher to use a non-stationary,
probabilistic strategy, so that 𝜎𝑡 (𝑢 |𝜃 ) denotes the probability that the
teacher will use parameterisation 𝑢 ∈ 𝑈 at iteration 𝑡 to influence a
learner with behaviour 𝜋 (·|·;𝜃 ).

4.2 BC-MDP: Strategy Optimality Criteria
Let us now, provide a formal definition of the teacher’s optimisa-
tion problem beyond its verbal description in Section 4.1.2. Let us
begin from the design of the teaching cost function 𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ), and
follow up with the construction of the overall optimality criteria for
a teacher’s strategy.

4.2.1 Classical Behaviour Cultivation Cost. As was men-
tioned in the Section 1, we adopt the teaching cost design from
Behaviour Cultivation (BC) [24]. We recap it here for background
completeness.

BC recognizes that the choice of environment parameterisation 𝑢
is only relevant, as long as it has a desired effect on the learner’s ex-
perience. That is BC does not separate between the (teaching) effort
it took to build a particular environment variation (i.e. the difference
between 𝑢 and 𝑢0) and (teacher’s) success in influencing the learner
(i.e., the difference between the current policy 𝜋 (·|·;𝜃 ) and the ideal
policy 𝜋 (·|·;𝜃∗)). Rather, BC compares the combinations of 𝑢 and
𝜃 with 𝑢0 and 𝜃∗. To achieve this, BC uses the Kullback-Leibler
Divergence Rate (KLR) [25] and compares the overall environment
dynamic under 𝑢 and 𝜃 with the dynamic under 𝑢0 and 𝜃∗. Formally,
the cost is defined by:

𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ′) = 𝐾𝐿𝑅(𝑃𝑢,𝜃 ′ (𝑠 ′, 𝑎′ |𝑠, 𝑎) | |𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎))

=
∑
𝑠,𝑎

𝑞(𝑠, 𝑎)
∑
𝑠′,𝑎′

𝑃𝑢,𝜃 ′ (𝑠 ′, 𝑎′ |𝑠, 𝑎) log
𝑃𝑢,𝜃 ′ (𝑠 ′, 𝑎′ |𝑠, 𝑎)
𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎)

Here, 𝑃𝑢,𝜃 ′ (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇 (𝑠 ′ |𝑠, 𝑎;𝑢)𝜋 (𝑎′ |𝑠 ′;𝜃 ′), i.e., overall en-
vironment dynamics when a learner follows the policy 𝜋 (·|·;𝜃 ′) in
the environment parameterised by 𝑢 ∈ 𝑈 . Similarly, 𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) =
𝑇 (𝑠 ′ |𝑠, 𝑎;𝑢0)𝜋 (𝑎′ |𝑠 ′;𝜃∗), and 𝑞(𝑠, 𝑎) is the stationary distribution of
𝑃𝑢,𝜃 ′ .

4.2.2 BC-MDP Optimality Design. We adopt BC’s cost func-
tion as well. However, we significantly differ from BC in a way
that the cost is aggregated. BC focused on a single learner, assumed
learning progress to be deterministic and used an open-loop teaching
strategy. None of these assumptions are present in BC-MDP, which
complicates its optimality criterion for the teacher’s strategy.

First, recall that we treat 𝐷0 as a statistic over a population of
learners. In fact, we must introduce a sequence of distributions 𝐷𝑡 ,
which denote the population statistic after the teaching iteration 𝑡 .
Hence, for 𝑡 ∈ [0 : 𝑇max] we have:

𝐷𝑡 (𝜃 ′) =
∑
𝜃,𝑢

𝐷𝑡−1𝜎𝑡 (𝑢 |𝜃 )𝐹 (𝜃 ′ |𝜃,𝑢)

In particular, it means that the teacher’s strategy needs to be con-
structed with population-wide effects in mind. Hence, teaching cost
is aggregated both in time, and in expectation over the engendered
population dynamic. Formally, this makes the teacher’s goal to solve:

min
𝜎𝑡

𝑇max∑
𝑡=1
E𝑢∼𝜎𝑡 ,𝜃 ′∼𝐷𝑡

[𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ′)], (1)

where

E𝑢∼𝜎𝑡 ,𝜃 ′∼𝐷𝑡
[𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ′)] =∑

𝜃 ′

∑
𝑢,𝜃

𝐷𝑡−1 (𝜃 )𝜎𝑡 (𝑢 |𝜃 )𝐹 (𝜃 ′ |𝜃,𝑢)𝐾𝐿𝑅(𝑃𝑢,𝜃 ′ | |𝑃∗) (2)

However, we found the optimisation problem in Equation 1 to be
unstable. We resolve this issue by introducing a regularisation com-
ponent. Intuitively, we seek to reduce the cognitive effort required
of the teacher to tune the environment individually for each possible
learner behaviour. As such a cognitive effort can be conveniently
captured by the complexity of the teacher’s strategy, we deploy in-
formation theoretic regularizer to control it. Namely, we introduce a
term 𝐼𝑡 (𝑢, 𝜃 ) based on mutual information between 𝑢 and 𝜃 into the
optimisation criterion. Formally, we define 𝐼𝑡 as follows:
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𝐼𝑡 =
∑
𝑢,𝜃

𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 ) log
𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 )
𝜎𝑡 (𝑢)𝐷𝑡−1 (𝜃 )

(3)

where 𝜎𝑡 (𝑢) =
∑
𝜃 𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 ). Choosing a strategy that mini-

mizes this term, the teacher is forced to "compress" its strategy and
use similar 𝑢 for multiple learner behaviours.

Putting them all together, we obtain the teacher’s optimality crite-
rion for non-stationary teaching strategies:

min
𝜎𝑡

𝑇max∑
𝑡=1

{
E𝑢∼𝜎𝑡 ,𝜃 ′∼𝐷𝑡

[𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ′)] + 𝛽𝐼𝑡
}
, (4)

where 𝛽 is an importance parameter to control the effect of strategy
compression.

Now, for cases such as therapeutic environment design [7], the
non-stationary 𝜎𝑡 (𝑢 |𝜃 ) is the preferred form. E.g., in a group therapy,
more aggressive means of influence may become appropriate to han-
dle "straggling" members of the group at later stages of the course.
However, in some domains, such as traffic management or green
game design [11], a stationary 𝜎 (𝑢 |𝜃 ) is more suitable, because it
represents an application of the law, which may be considered im-
mutable during its application. The optimality criterion for stationary
𝜎 (𝑢 |𝜃 ) is:

min
𝜎

𝑇max∑
𝑡=1

{
E𝑢∼𝜎,𝜃 ′∼𝐷𝑡

[𝐶𝑜𝑠𝑡 (𝑢, 𝜃 ′)]
}
+ 𝛽𝐼0, (5)

In summary, the optimization problem (taking non-stationary
𝜎𝑡 (𝑢 |𝜃 ) as example) with all constraints can be described as fol-
lows. We solve the optimization problem by standard application of
Lagrange multipliers.

argmin
𝜎𝑡 (𝑢 |𝜃 )

𝑇𝑚𝑎𝑥∑
𝑡=1

{
∑
𝜃 ′

∑
𝑢,𝜃

𝐷𝑡−1 (𝜃 )𝜎𝑡 (𝑢 |𝜃 )𝐹 (𝜃 ′ |𝜃,𝑢)𝐾𝐿𝑅(𝑃𝑢,𝜃 ′ | |𝑃∗)

+ 𝛽
∑
𝑢,𝜃

𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 ) log
𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 )
𝜎𝑡 (𝑢)𝐷𝑡−1 (𝜃 )

}

𝑠 .𝑡

𝐷𝑡 (𝜃 ′) =
∑
𝜃,𝑢

𝐷𝑡−1 (𝜃 )𝜎𝑡 (𝑢 |𝜃 )𝐹 (𝜃 ′ |𝜃,𝑢)

𝜎𝑡 (𝑢) =
∑
𝜃

𝜎𝑡 (𝑢 |𝜃 )𝐷𝑡−1 (𝜃 )∑
𝑢

𝜎𝑡 (𝑢 |𝜃 ) = 1

5 EXPERIMENT
In this section, we evaluate the performance of the proposed BC-
MDP model and the designed optimality criterion.

5.1 Experiment Setup
The BC-MDP is theoretically feasible in both discrete and continu-
ous domains. In this experiment, we focus on the discrete domain to
clearly demonstrate the BC-MDP’s performance without intricate
variables. We seek a simplest, but quickly extendable, environment
that allows us to evaluate the BC-MDP model.

5.1.1 Learning Process Environment. For the learning pro-
cess, we build a 4 × 4 windy grid-world as the environment domain
as Figure 2. It is necessary to note that the wind application is a
mechanism to modulate the environment dynamics. In each state,
the agent moves in one of the four cardinal directions. If the state is
experiencing the up/down wind, the agent’s next state will be shifted
upward/downward by the wind strength. Additionally, it is important
to note that the learner’s timeframe is different from the teacher’s
timeframe. In more details, a teaching iteration 𝑡 corresponds to
several learning time steps. The length of learning duration is unified
for all the learners, and it is fixed for each teaching iteration.

1

Figure 2: Environment of learning process: 4 × 4 windy grid-
world. The red arrow represents the wind application.
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Figure 3: Environment of teaching process: When the teacher
implements specific wind on the grid-world, learners accord-
ingly update their behaviour policies following corresponding
transition probabilities.

5.1.2 Teaching Process Environment. For the teaching pro-
cess, we intentionally define a simple teaching environment with
artificially small size of Θ and𝑈 . As shown in Figure 3, the teaching
environment includes the learning process, where its state space
Θ is the set of learner’s possible behaviour policies, and its action
space𝑈 consists of all kinds of wind applications. In addition, there
are two assumptions in this initial experiment. First, the teacher is
assumed to know learners’ behaviour policies at each teaching itera-
tion, as well as the population behaviour distribution. The second
assumption is that the teacher has prior knowledge of the policy
transition probability 𝐹 (𝜃 |𝜃 ′, 𝑢). 𝐹 (𝜃 |𝜃 ′, 𝑢) represents the effect of
teaching action𝑢 on the learner’s policy transition, which is designed
as Figure 4.
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Teaching Terminology Meaning Notation
action The modification action on the environment transition function (dynamics) 𝑢 ∈ 𝑈

strategy The time-dependent mapping from learning agents’ behaviour to the teaching agent’s action 𝜎𝑡 (𝑢 |𝜃 )
accuracy The proportion of the learning agents following the desired behavior 𝐷𝑡 (𝜃∗)

cost The individual deviation caused by the tweaked environment and the undesired policy 𝐾𝐿𝑅(𝑢, 𝜃 ′)
success The similarity between individual behaviour policy with the desired behaviour –
effort The amount of modifications on the environment transition function (dynamics) –

complexity The cost of implementing simultaneous but independent teaching actions –
Table 1: Terminology list about Teaching Process

70%

70%

20%

20%10%

10%

100%

(a) 𝐹 (𝜃 ′ |𝜃,𝑢1)
20%

80%

100%

80%

20%

(b) 𝐹 (𝜃 ′ |𝜃,𝑢2)
100%

100% 100%

(c) 𝐹 (𝜃 ′ |𝜃,𝑢3)

Figure 4: Policy transition probability: effect of teaching ac-
tions on the learner’s policy transition.

5.2 Baseline
The BC-MDP model is developed based on the classical BC and
the Curriculum-MDP. As described in Section 4, our objective is
quite different from the goal of curriculum policy, thus rendering
Curriculum-MDP an unfit benchmark in this work. Instead, the
classical BC is the ideal benchmark due to the same optimization
objective. However, it is not designed for the population cultivation.
In order to enable the classical BC work for learner population, we
tweak its cost function as:∑

𝜃 ′

∑
𝑢,𝜃

𝐷𝑡−1 (𝜃 )𝜎𝑡 (𝑢)𝐹 (𝜃 ′ |𝜃,𝑢)𝐾𝐿𝑅(𝑢, 𝜃 ′)

Here, 𝜎𝑡 (𝑢) is a time-dependent sequence of teaching actions, which
is blind to the learner’s specific behaviour policy.

5.3 Results
In this section, we evaluate the performance of the BC-MDP via
comparing with the classical BC. The responsive feature of the
BC-MDP will be discussed and the corresponding effect will be
analyzed. Then, we explore the effect of mutual information (i.e., the

regularization in the optimality criterion) on the teaching strategy
generation. For unambiguous discussion, Table 1 is provided to
explain terminologies involved.
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Figure 5: Comparison of the BC-MDP and the classical BC in
different𝑇𝑚𝑎𝑥 settings. The scatter represents the final teaching
accuracy and the line represents the cumulative KLR cost.

5.3.1 Effect of Responsive Feature.

Evaluation in Different Tmax. The first experiment is to evalu-
ate the teaching performance in different 𝑇𝑚𝑎𝑥 settings. It is imple-
mented for a limited-size learner population. Here, we set the initial
behaviour distribution as 𝐷0 = [0.3, 0.2, 0.5] and accordingly extract
50 samples whose group consists of 100 learners.

Figure 5 displays the final teaching accuracy and the overall teach-
ing cost generated by the BC-MDP and the classical BC. According
to Table 1, the teaching cost is defined as the deviation caused by the
tweaked environment and the undesired policy, which measures the
balance between teaching effort with teaching success. Therefore,
the lower teaching cost means the better balance performance. Since
the teaching cost is computed by KLR, the cumulative teaching cost
is labeled as KLR cost in the figure. Based on Figure 5, we can draw
three conclusions as follows.

First, focusing on the teaching accuracy, when the number of
teaching iteration is large enough (e.g., 𝑇𝑚𝑎𝑥 = 15), both the BC-
MDP and the classical BC have good teaching performance. How-
ever, when 𝑇𝑚𝑎𝑥 is limited, the BC-MDP obviously achieves better
final teaching accuracy. For example, when 𝑇𝑚𝑎𝑥 = 6, the BC-
MDP non-stationary 𝜎𝑡 (𝑢 |𝜃 ) achieves 98.75% accuracy and station-
ary 𝜎 (𝑢 |𝜃 ) achieves 98.70% accuracy, in contrast, the classical BC
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only reaches 89.04% accuracy. In other words, the BC-MDP im-
proves the teaching accuracy by 10.59%. As shown, the advantage
of BC-MDP on teaching accuracy is more prominent as the 𝑇𝑚𝑎𝑥

becoming less.
Second, focusing on the overall teaching cost, it is obvious that

the BCMDP achieves lower teaching cost whatever the 𝑇𝑚𝑎𝑥 set-
tings. As shown in Figure 5, when 𝑇𝑚𝑎𝑥 = 15, teaching accuracies
are similar but differences of teaching costs are obvious. This means
that BC-MDP takes less teaching effort when achieving the same
accuracy performance. As mentioned before, the teaching cost mea-
sures the balance, thus, the proposed BC-MDP is more advantageous
in balancing the overall teaching success with the teaching effort.

Third, combining the analysis of both teaching accuracy and
teaching cost, we can conclude an optimal 𝑇𝑚𝑎𝑥 that is able to
achieve good teaching accuracy with the least total effort. As Figure
5, for BC-MDP, the optimal maximum teaching time is 𝑇𝑚𝑎𝑥 = 8,
where the teaching accuracy converges to a stable value while the
cumulative teaching cost is the least in horizontal comparison. In
contrast, the classical BC has 𝑇𝑚𝑎𝑥 = 15 as the optimal maximum
teaching time. As a result, the BC-MDP makes obvious improvement
in teaching efficiency, which utilizes less teaching time to achieve
the better teaching accuracy as well as the less total teaching effort.

In addition, the BC-MDP non-stationary teaching strategy 𝜎𝑡 (𝑢 |𝜃 )
is expected to perform better than the stationary teaching strategy
𝜎 (𝑢 |𝜃 ) due to its responsive ability to the teaching iteration 𝑡 . How-
ever, Figure 5 shows that performances of 𝜎𝑡 (𝑢 |𝜃 ) and 𝜎 (𝑢 |𝜃 ) are
almost the same. The reason is that the experiment design is sim-
ple and the policy transition probability is constant in respect of
teaching iterations. Since 𝜎𝑡 (𝑢 |𝜃 ) and 𝜎 (𝑢 |𝜃 ) are quite similar in
teaching performance, we use stationary 𝜎 (𝑢 |𝜃 ) as the representation
of BC-MDP in following discussion.
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Figure 6: Comparison of the BC-MDP and the classical BC
with different initial behaviour distributions. The line repre-
sents the teaching accuracy during the teaching process; The
scatter marks the accuracy value at each teaching iteration.

Evaluation with Different D0 (𝜃 ). The second experiment is to
demonstrate that, no matter what the initial behaviour distribution,
the responsive feature enables the BC-MDP perform better than
the classical BC. We implement the experiment with fixed 𝑇𝑚𝑎𝑥 =

15, and test 100 samples whose initial behaviour distributions are
randomly set.

Figure 6 shows the teaching process of the BC-MDP with compar-
ison of the classical BC. As shown, even though both the BC-MDP
and the BC achieve final teaching accuracy more than 98.5%, the
BC-MDP has a better teaching speed during the process. For ex-
ample, the BC-MDP successes in nudging 95.83% learners at 4𝑡ℎ
teaching iteration while the classical BC takes more than 10 teaching
iterations to reach 95.10% accuracy. It means the BC-MDP is able to
complete a specific goal with less teaching iterations, thus, the better
teaching efficiency is achieved by BC-MDP.
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Figure 7: Heatmap representation of teaching strategies in (a)
BC-MDP and (b) classical BC, when 𝑇max = 6.

Analysis via Teaching Strategy Examples. We will discuss a
teaching strategy example in detail, in order to explain results shown
in Figure 5 and Figure 6. Heatmaps in Figure 7 represent teaching
strategies generated by the BC-MDP and the classical BC.

First, we analyze the teaching strategy generated by the BC-MDP
as Figure 7a. As denoted in policy transition probabilities given in
Figure 4, 𝜃1 has 80% probability to transit to the desired 𝜃2 when
trained by 𝑢2. Such high transition probability is the main reason
why the teacher chooses 𝑢2 for training 𝜃1. Besides, for learners
with behaviour type 𝜃3, it is a two-step teaching strategy: the teacher
first transforms 𝜃3 to 𝜃1 by taking 𝑢1 and thereafter takes 𝑢2 to
cultivate them to transit to the desired 𝜃2. Such two-step teaching
matches the policy transition probability given in Figure 4. 𝜃3 only
has 20% probability to become 𝜃2 via 𝑢2, thus, the 𝑢2 is not an
efficient teaching action. Instead, since the effort of taking 𝑢1 is less
than that of 𝑢2, 𝜃3 is first trained by the less-effort 𝑢1 and becomes
an intermediate behaviour 𝜃1. Since a specific teaching action is
adopted responding to the learner’s behaviour type 𝜃 , the learner
can be cultivated specifically with higher transition efficiency. As a
result, BC-MDP has a good performance in teaching accuracy even
when the 𝑇𝑚𝑎𝑥 is limited.

Then, for the classical BC, one teaching action is applied for all
the learners at each teaching iteration. First, since there are 50% learn-
ers who have initial behaviour 𝜃3 according to𝐷0 (𝜃 ) = [0.3, 0.2, 0.5],
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the teacher takes 𝑢1 at the first teaching iteration 𝑡1. As explained be-
fore, it is an efficient teaching action for the majority of learners who
follow 𝜃3. However, the side effect is that the 20% 𝜃2 will departure
from the desired behaviour when trained by 𝑢1, which has negative
effect on the teaching accuracy. It explains why the teaching accu-
racy of the classical BC decreases at 𝑡 = 1. Then, the teacher takes
𝑢2 for all the learners until the last teaching iteration. For learners
who follow 𝜃1 and 𝜃2, 𝑢2 is an ideal teaching action due to 80% and
100% transition probability as shown in Figure 4. However, 𝑢2 is of
low efficiency for cultivating the minority who follows 𝜃3 due to the
low transition probability. As a result, more teaching iterations are
required to cultivate 𝜃3. This is the main reason why the classical
BC performs poorly when 𝑇𝑚𝑎𝑥 is limited but performs well when
𝑇𝑚𝑎𝑥 is large enough.
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Figure 8: Effect of the regularizer (mutual information) in dif-
ferent 𝛽 settings: the bar represents the teaching action distri-
bution; the dot line means the final teaching accuracy.

5.3.2 Effect of Mutual Information. As description in Sec-
tion 4, the mutual information 𝐼𝑡 controls the complexity of the
teacher’s strategy. It compresses the teacher’s strategy to use similar
𝑢 for multiple learner behaviours, where the parameter 𝛽 controls
the effect of strategy compression. To evaluate the effect of mutual
information, we fixed 𝑇𝑚𝑎𝑥 = 10 and set 𝐷0 (𝜃 ) = [0.3, 0.2, 0.5].

Figure 8 shows teaching action distribution and teaching accuracy
in different 𝛽 settings. For stationary teaching strategy, when the 𝛽
is small, it successes in nudging most learners due to the respon-
sive feature playing the leading role. With the increasing of 𝛽, the
teaching action diversity is decreasing until only one teaching action
adopted. At the same time, the teaching accuracy is becoming worse
due to the less responsive teaching action. Therefore, the mutual
information controls the responsive level between the teaching strat-
egy with learners’ behaviours. In this way, it influences the trade-off
between teaching accuracy with the teaching complexity (i.e., the
structural/cognitive complexity of the teaching strategy).

6 LIMITATION AND FUTURE WORK
This work experimentally demonstrates that the proposed BC-MDP
preserves strengths of the BC, and furthermore performs better
on teaching efficiency for population cultivation. Nevertheless, the

model is developed with assumptions which may cause a gap be-
tween theoretical model and practical applications. To further im-
prove the feasibility and scalability, promising directions of the
future work are described as follows.
Agent Modeling: It is assumed that the teacher exactly knows the
behaviour policy of the individual learner, and also knows the be-
haviour distribution of the population. In some applications, this
assumption can be satisfied, such as MOOCs. However, it is difficult
to meet such assumption in other scenarios, such as traffic manage-
ment. To widen the breath of applicability, we would like to adopt
agent modeling approaches [1, 12] that enable the teacher learn the
learner’s behaviour policy via interactions.
Policy Transition Probability: Another assumption is that the teacher
has prior knowledge on learners’ policy transition probabilities. With
this assumption, the population cultivation is regarded as a planning
problem. In the future work, we would like to extend such planning
problem into a learning problem, where the teacher needs to learn
the transition probabilities when designing the teaching strategy. In
this way, the proposed BC-MDP model would be feasible for more
complex environment where preliminary experiments are difficult to
implement.
Extension to Teamwork: Currently, the proposed BC-MDP model is
suitable for scenarios where multiple learners are independent with
each other. It means that there is no cooperation or communication
among the learner population. And learners have no joint objective,
instead, they seek the individual optimal reward. In the further work,
we would like to further explore the teamwork cultivation, where
agents cooperate with each other to achieve a common goal, such as
swarm system [5, 13].
Effect on Learning Process: The teaching model can be integrated
with variant learning algorithms, even though this work does not
discuss this part deeply. In the future experiment, we would like to
integrate the teaching algorithm with different learning algorithms,
such as deterministic algorithms (i.e., dynamic programming) and
stochastic algorithm (i.e., neural network). The effect of the BC-
MDP on the learning process would be explored further, such as the
improvement on learning speed.

7 CONCLUSION
We proposed a teaching model BC-MDP for population behaviour
cultivation. The model is built as a two-level interactive MDP archi-
tecture with responsive features, which generates a time-dependent
and time-independent mapping from the learner’s specific behaviour
to the teaching action. We designed an optimality criterion to balance
the teaching accuracy with the teaching effort and complexity. Our
empirical evaluation supports the feasibility and effectiveness of the
BC-MDP, as well as its retention of positive features from the BC.
Moreover, the BC-MDP is more advantageous compared with the
classical BC, especially on teaching accuracy within limited teaching
iterations, and on teaching balance between the accuracy with total
effort. This work demonstrates that the proposed BC-MDP model is
a potentially effective model for automate nudge generation.
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