
Learning Correlation Functions on Mixed Data Sequences
for Computer Architecture Applications

Zerong Xi, Gita Sukthankar

Department of Computer Science

University of Central Florida

Orlando, FL USA

zxi@knights.ucf.edu, gitars@eecs.ucf.edu

ABSTRACT
Computer architectures require prediction to manage memory and

storage operations such as prefetching, caching, and scheduling.

Rather than relying on heuristics, a more powerful approach is to

employ machine learning to learn general models for storage and

retrieval. This paper introduces a technique, Temporally Aware

Embedding (TAE), for learning correlation functions directly from

mixed data sequences. We use a force-based learning model in

which the co-occurrence of data elements within a sliding tempo-

ral window creates attraction forces that increase the correlation

magnitude, while repulsion forces act to distribute points more

uniformly across the embedding space. Our experiments show that

TAE outperforms both simple and state of the art strategies at pre-

dicting the next element of data access traces. The embeddings

learned with our approach can be combined with other algorithms

to perform prefetching and caching in architectures which require

greater intelligence to keep pace with growing user storage de-

mands.
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1 INTRODUCTION
Modern computer systems need to rapidly process large amounts

of streamed and stored data. To reduce latency, most architectures

make predictions about future data demands based on observed

sequences in order to make prefetching, caching, and storage deci-

sions [5]. Although there have been algorithms [4, 6] and heuristics

developed to handle specific tasks, all of them share the same math-

ematical characteristic—the need to compute correlation functions

from mixed data sequences. A correlation function provides a mea-

sure of statistical correlation between random variables, based on

spatial or temporal distance [3]. Our aim is to rapidly learn a corre-

lation function from limited data to model the temporal patterns

that occur in data streams when related data is accessed.

This paper introduces a method, Temporally Aware Embedding

(TAE), for learning an embedding that leverages the temporal infor-

mation extracted from data retrieval sequences. Since our algorithm

solely relies on sampled sequences, it can be used even in complex

architectures where the data semantics are not known to the ob-

server. Our assumptions are: 1) several retrieval processes occur

concurrently resulting in a single mixed sequence and 2) the corre-

lation is roughly proportional to the first order Markov statistics of

the random process.

TAE’s correlation embedding is calculated by applying a kernel

function to a sliding window over the temporal sequence. Data

co-occurrences within the sliding window result in attractive forces

that increase the magnitude of correlation while repulsive forces

operate to distribute the data more uniformly. Our method yields

an informed embedding which can be utilized in combination with

other heuristics and machine learning techniques in order to intelli-

gently prefetch, cache, or store data. Our experiments demonstrate

that it outperforms both simple heuristics and state of the art deep

learning strategies at predicting the next element of real database

sequences as well as synthetically generated datasets.

The next section describes related work in the area of sequence

analysis for computer architectures. Then we introduce our method,

Temporally Aware Embedding (TAE), and present the results of our

comparison. We conclude the paper by discussing future extensions

of our method to cases where the training dataset has missing

elements.

2 RELATEDWORK
Sequential data is commonly analyzed using two different types

of approaches: pattern mining [2] and sequence learning [8]. Se-

quence pattern mining extracts frequently repeated subsequences

that exceed a minimum support threshold in the dataset. This style

of analysis has been employed to find block correlations in storage

systems [6]; the C-Miner system extracts association rules based

on subsequences found using Closed Sequential Pattern Mining.

These rules were then integrated into correlation based prefetching

and disk layout systems.

The prefetching problem is particularly well suited for sequence

learning since the aim is simply to predict the next element that

needs to be retrieved. This can either be structured as a classification

or a regression problem and handled with the same type of neural

network architectures that are commonly used in natural language

processing [7]. Hashemi et al. ([2018]) demonstrated the application

of two LSTM models for prefetching: a single embedded LSTM (the

benchmark in our paper) and a multi-task LSTM learned from

clustered data. The key advantage of our method vs. the above

approaches is that it both requires less data to train and less compute

time to execute, making it highly suitable for integration into a

computer architecture.

3 METHOD
This section provides a description of our algorithm, Temporally

Aware Embedding (TAE), for learning embeddings from mixed

sequential data.



3.1 Problem Statement
Assume that there is a set S such that every a,b ∈ S has an un-

derlying correlation cor (a,b) ∈ R and that D = (x1, ...,xT ) ∈ SN

is a sequence sampled on S subject to P(xt+1 |xt ) ∝ cor (xt ,xt+1)∑
x∈S cor (xt ,x )

.

TAE embeds every a ∈ S based solely on whether a appears in D
into a vector space V in which d(va ,vb ) is negatively correlated

to cor (a,b). Our desiderata are to create an algorithm that is 1)

highly robust to noise and 2) able to deal with a random mixture of

multiple sequences Dmix ∈ SN.

3.2 Learning the Embedding
First we sample one pointvx ∈ V for each x ∈ S′ from an initial dis-

tribution (Gaussian or uniform) where S′ = {a ∈ S|a ∈ D}. Then
we apply a physics based model of attraction and repulsion forces

to modify the position of the points based on their co-occurrence in

the observed data sequence. The final embedding is obtained after

the model converges to a stable state.

The only information source that we use to aggregate correlated

points is the data sequence,D. Intuitively, every pair of consecutive

points vxt , vxt+1 should be considered for aggregation. However,

due to the existence of noise and interleaved sequences, consecutive

points may be separated by irrelevant ones. Instead, we assume that

two points vxt , vxt+i are correlated if i ≤ l for some preselected

l ∈ N. Even with our mixed data sequences, if two points appear

together within a window of length l in D multiple times they are

likely to be the result of the same data access process.

Specifically, at each t = 1, ...,T , we take a weighted sum of the

points vxt−l , ...,vxt−1 , based on their temporal distances to vxt in
D, as the source of an attractive force. Then vxt moves a distance

in V scaled by the factor α ∈ R, which may decay over time, as

the result of applying the force. A kernel K = (k1, ...,kl ), which is

either linear or exponential in our experimental settings, serves as

the weighting function. Separate kernels can be applied to different

dimensions of V to explore multiple types of correlations. The

attraction formula is shown in Equation 1.

vxt := (1 − α)vxt + α
∑
i=1:l

kivxt−i (1)

A space created by attractive forces would collapse resulting in

lost volume as well as damaging the smoothness of functions. To

prevent this, we incorporate repulsive forces to distribute points

more uniformly. A simple idea is to linearly expand V to maintain

a standard such as normalizing each dimension by the standard

deviation. This can work well but often embeds most points into a

smaller area, while drifting a minority too far. Thus we introduce

a repulsive force which is inversely proportional to a power γ of

distance and scaled by a factor β ∈ R, as shown in Equation 2. In

practice, we only consider the repulsion force between neighboring

points to reduce the computation time.

vxt := vxt + β
∑
x ∈S′
(vxt −vx ) · d−γ (vxt ,vx ) (2)

Finally, we obtain an embedding table in which every a ∈ S′
has a corresponding point va ∈ V. Note the embedding will not

encompass elements that were not observed during the data access

sequence.

Algorithm 1 Temporally Aware Embedding

1: Given mixed sequence D, the desired number of mapping

dimensions n, kernel K , attraction factor α , repulsion factor β ,
repulsion power γ , stopping criterion τ

2: S← UniqueElements(D)

3: for s ← S doM(s) ← N(d ; 0, I)
4: end for
5: while true do
6: M ′ ←M
7: M ′′ ← Attractive(D,S,K,M ′,n)
8: for s ← S doM(s) ← (1 − α) · M ′(s) + α · M ′′(s)
9: end for
10: M ′′ ← Repulsive(M ′, S, γ )
11: for s ← S doM(s) ← M(s) + β · M ′′(s)
12: end for
13: if

∑
s ∈S d(M(s),M ′(s)) < τ then break

14: end if
15: end while
16: returnM

Algorithm 2 Attraction Force

1: function Attractive(D,S,K,M,n)
2: l ← Length(K)
3: c ← 0

S

4: M ′ ← 0
S×n

5: for i ← l ... do
6: M ′(Di ) ← M ′(Di ) +

∑
j=i−l :i KjM(Di−j )

7: cs ← cs + 1
8: end for
9: for s ← S doM ′(s) ← M ′(s)/cs
10: end for
11: returnM ′
12: end function

Algorithm 3 Repulsion Force

1: function Repulsive(M, S, γ )

2: M ′ ← 0
S×n

3: for s ← S do
4: M ′(s) ← ∑

s ′∈S(M(s ′) −M(s)) · d−γ (M(s),M(s ′))
5: end for
6: returnM ′
7: end function

3.3 Correlation-based Prediction
We believe that Temporally Aware Embedding produces correlation

functions that can be used by a variety of data access operations

in combination with other algorithms. For prefetching, an obvious

implementation is to retrieve the N most correlated elements given

u(a) where a ∈ S. A naive approach is to calculate d(va ,vb ) for
every b ∈ S′ based on the embedding table that we obtain from

TAE and prefetch the element with the least distance to va .

2



𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔 … 𝒕𝟑𝟐 𝒕𝟑𝟑 …

𝑒𝑡1 𝑒𝑡2 𝑒𝑡3 𝑒𝑡4 𝑒𝑡5 𝑒𝑡6 … 𝑒𝑡32 𝑒𝑡33 …

Correlated candidates for 𝑒𝑡33
A set of elements with underlying 
pairwise correlation (link).

A mixed sequence generated on the set, 
based on the correlations.

The elements embedded into continuous 
space by learning from the sequence.

Figure 1: The mixed data sequence (upper right) is generated by multiple processes simultaneously making data accesses on a
set (upper left) where an underlying pairwise correlation exists between related data. Our method embeds the elements into
a N -dimensional continuous space (lower) based on the dependency shown in the sequence.

4 EXPERIMENTS
To evaluate the utility of the correlation function learned by TAE,

we compare it to other approaches on a simplified prefetching

scenario. To do this, we simply retrieve the N most correlated

elements for each location on a sequence, and then evaluate the

frequency of their occurrence in the near future. The experiments

are performed both on simulated and real computer storage access

traces.

4.1 Synthetic Data
To generate synthetic data, we simulate a computer storage sce-

nario. Initially, a dataset S of N elements is generated, in which

each of the elements is assigned an index. A correlation function

cor (a,b),a,b ∈ S is imposed by assigning a uniformly sampled

value between a number of randomly selected pairs and among

consecutively indexed elements. Then a list of processes indepen-

dently sample S based on the correlation function to produce a

mixed sequence D. The procedure for generating synthetic data is

shown in Algorithm 4.

For our experiments, we generated four sets of N=5K, 10K, 20K,

50K elements respectively, in each of which neighboring elements

Algorithm 4 Mixed Sequence Generator

1: Given set S, correlation function cor (·, ·), number of processes

M , length of sequence T , process switch probability p
switch

,

process reinitialize probability preinit
2: A ← Uniform(M ;S)
3: a ← Uniform(1;M)

4: for t ← 1,T do
5: if Uniform() ≤ p

switch
then

6: a ← Uniform(1;M)

7: end if
8: if Uniform() ≤ preinit then
9: Aa ← Uniform(1; S)
10: else
11: Aa ← Sample(1; S, cor (Aa , ·))
12: end if
13: Dt ← Aa
14: end for
15: return D

and 10N pairs are set correlated. A mixed sequence of length 100N
is sampled from each set.
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Figure 2: A 2D visualization of the embedding discovered by
TAE on synthetic data, Attraction forces concentrate some
of the data in the center, while the repulsion forces spread
the rest of the data across the space.

4.2 Computer Storage Traces
We also apply TAE to computer storage I/O trace datasets, Fi-

nancial1 and Financial2, from the UMass Trace Repository. These

datasets were gathered from I/O traces of Online Transactional

Processing systems running at two large financial institutions. The

logical block address (LBA) information is used as the index, and

the addressed storage unit is treated as the element. Because of

the spatial locality and the distributed characteristics of computer

storage, we assume that the correlation function on storage units is

similar to that generated by our mixed sequence generator. More-

over, contemporary computers and servers are usually running a

large number of threads simultaneously. Therefore, the real-world

data access traces are both mixed and noisy, which is substantially

different frommany natural language processing sequence learning

tasks.

Financial1 is a mixed sequence of length 5334987, which con-

tains 710908 distinct units. Financial2 is a mixed sequence of length

3699195, which contains 296072 distinct units. As no higher-level

information, e.g. file distribution or OS thread id, is provided with

those datasets, we do not know the ground truth correlation func-

tion information for these traces.

4.3 Baseline Approaches
We compare TAE to the following techniques:

(1) InformedGuess. This heuristic simplymakes randomguesses

informed by the prior probabilities of the elements, thus

leveraging the degree of data concentration.

Kernel linear

Window Size 64

Alpha 0.5

Beta 5e-7

Gamma 2

Number of Dimensions 8

Stopping Criterion 5e-3

Table 1: TAE Hyperparameters

(2) LocalNeighbors. Prediction ismade by by selecting a neigh-

bor based on a Gaussian distribution, thus leveraging the

degree of data locality.

(3) Embedding LSTM [4]: This approach learns the differences

in computer storage addresses by assuming that the patterns

are spatially invariant. It encodes the most frequent deltas

(differences) into one-hot bins and then learns the sequence

using a LSTM. They also propose an advanced approach

combining clustering and LSTM. The advanced approach

is designed to handle the long thread-switching interval of

computer memory, which does not exist in computer storage.

For this comparison, we use the same configuration as [4],

which includes a 128×2 LSTM, 500k training steps, a sentence

length of 64, embedding size of 128, and is restricted to the

50,000 most frequently appearing deltas.

(4) Transition Matrix. This technique predicts the most likely

next element based on transition probabilities. Rather than

using consecutive elements, we augment the transition prob-

ability of any two elements appearing within a short window.

Conceptually, this approach is the most similar to TAE.

Table 1 shows the configuration of TAE used for our experiments.

Based on our initial pilot studies, we concluded that its performance

is not very sensitive to modifications in the hyperparameters.

4.4 Results
In each experiment, the first 70% of the sequence is used for training,

and the last 30% is reserved for testing. The experimental results are

reported both on the probability (Table 2) and the occurrence (Ta-

ble 3) of the top-1 prediction in a window of the following 128 time

steps. Because of the mixing, consecutive elements in a sequence

are unlikely to be generated by the same process. Therefore, we

count those as successful predictions provided they appear within

a short future window.

Our results show that the mixed synthetic sequences are very

challenging and defy the commonly used concentration and locality

heuristics. Those heuristics (Informed Guess and Local Neighbors)

perform better with the financial traces, which exhibit a higher

skewness of the distribution and a stronger locality. As we expected,

the embedding LSTM [4], which performswell in computermemory

scenarios, is not suitable for mixed sequences that contain large

numbers of elements. The LSTMdoes outperform the othermethods

on the Financial2 dataset. However the training of a LSTM network

costs dozens of GPU hours, compared to a few minutes for TAE.

Surprisingly, our approach significantly outperforms transition

matrix, which uses the same underlying idea of strengthening the
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Approach\Dataset Synthetic (5K) Synthetic (10K) Synthetic (20K) Synthetic (50K) Financial1 Financial2

Informed Guess 0.0215 0.0109 0.0053 0.0021 0.0479 0.0328

Local Neighbors 0.0441 0.0330 0.0287 0.0256 0.0612 0.0901

Embedding LSTM 0.0267 0.0219 0.0132 0.0103 0.1368 0.2417
Transition Matrix 0.2036 0.1979 0.1955 0.1961 0.2476 0.1801

TAE 0.2708 0.2621 0.2586 0.2580 0.3239 0.1947

Table 2: The probability that top-1 prediction appears in the following 128 time steps.

Approach\Dataset Synthetic (5K) Synthetic (10K) Synthetic (20K) Synthetic (50K) Financial1 Financial2

Informed Guess 0.0264 0.0134 0.0065 0.0027 0.0980 0.0532

Local Neighbors 0.0526 0.0390 0.0335 0.0296 0.0916 0.1215

Embedding LSTM 0.0360 0.0300 0.0181 0.0150 0.2500 0.3469

Transition Matrix 0.2855 0.2800 0.2745 0.2764 0.5298 0.4322
TAE 0.3827 0.3677 0.3610 0.3610 0.6711 0.4249

Table 3: The average occurrences of top-1 prediction in the following 128 time steps.

correlation between elements that appear within a short time win-

dow.We believe that the transition matrix fails to model the indirect

correlation between elements which is captured by our technique.

Since TAE learns an embedding, it is easier to combine with other

machine learning methods. It is also worth noting that our ap-

proach has a similar prediction accuracy across synthetic datasets

of varying sizes, which demonstrates its scalability.

5 DISCUSSION
This section discusses possible extensions of Temporally Aware

Embedding to handle unseen data elements along with a new

correlation-based sampling technique.

5.1 Mutual Mapping
Only the embedding ofa ∈ S′ is meaningful with Temporally Aware

Embedding. However, if there exists another meaningful encoding,

e.g. a representation for a localization property in S, the embedding

can be extended to any a ∈ S through a mutual mapping between

those two representations using continuous function approximators.

Such an encoding exists for certain problems. For example, the

addresses in computer systems are commonly encoded as tuples of

bits, subsets of which may contain segment or page information.

Assume u(a) ∈ U is a proper encoding for any a ∈ S. Two
learning models, specifically deep neural networks, F(va ) = u(a)
and G(u(a)) = va can be trained respectively with the encoding

and embedding pairs of x ∈ S′. Based on continuity restriction, F is

able to map every point va to U as a sample that is both temporally

and locally correlated to nearby b ∈ S′. Meanwhile, G allows us to

discard the space-consuming embedding table. More importantly,

it can embed unknown a ∈ S as long as u(a) can be acquired.

5.2 Correlation-based Sampling
Since mutual mapping discards the table and extends the embed-

ding, we propose a sampling method that can be extended to situa-

tions where a < S′ or when some elements that are highly corre-

lated to a do not appear in S′.

Our sampling method starts by acquiring the embedding for a,
which isva = G(u(a)). Afterwards, a set of candidates {vb1 , ...,vbN }
is sampled in V from a Gaussian distribution with µ = va and pre-

selected small σ ∈ R. We can obtain u(bi ) = F(vbi ) for i = 1, ...,N ,

and find the corresponding elements b1, ...,bN with them if u is

invertible. The procedure is as follows:

u(bi ) = F(N(G(u(a)),σ 2)) for i = 1, ...,N (3)

According to mutual mapping, the sampled elements are neigh-

bors to a both in V and U. Thus they are highly correlated to a.

6 CONCLUSION AND FUTUREWORK
This paper introduces a technique, Temporally Aware Embedding

(TAE), for learning correlation functions frommixed data sequences.

The intuition behind TAE is that an embedding can be learned

from element co-occurrences within a sliding time window. Our

technique is simple and fast, which makes it highly suitable for

computer architecture applications such as prefetching. It is robust

to noisy and mixed data sequences, and also scales to datasets with

large numbers of unique elements.

We evaluated TAE vs. a set of popular heuristics and deep learn-

ing methods. Even though the TAE learning rule is based largely

on first order Markov statistics, it significantly outperforms a tran-

sition model created from a direct estimate of those statistics. We

believe that the TAE embedding is more effective at capturing in-

direct relationships that are missed by the transition matrix. For

instance, two elements that co-occur with another shared element,

yet do not appear together, are not considered correlated by the

transition matrix but are likely to appear in close proximity in our

embedding. In future work, we plan to extend our embedding and

sampling techniques to handle unseen data elements.
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