Using Reinforcement Learning for a Large Variable-Dimensional
Inventory Management Problem

Hardik Meisheri, Vinita Baniwal,

Nazneen N Sultana, Harshad Khadilkar
TCS Research
Mumbai, India
[hardik.meisheri,vinita.baniwal,nn.sultana,harshad.
khadilkar]@tcs.com

ABSTRACT

This paper evaluates the applicability of reinforcement learning
(RL) to multi-product inventory management in supply chains. The
novelty of this problem with respect to supply chain literature
is (i) we consider concurrent inventory management of a large
number (hundreds) of products under realistic constraints such as
shared capacity, and (ii) the number of products (size of the prob-
lem) can change frequently, implying that the RL agent needs to
work in this regime without retraining. We approach the problem
as a special class of dynamical system control, and explain why the
generic problem cannot be satisfactorily solved using classical opti-
misation techniques. Subsequently, we formulate the problem in a
reinforcement learning framework that can be used for parallelised
decision-making, and use the advantage actor critic (A2C) and deep
Q-network (DQN) algorithms with quantised action spaces to solve
the problem. Experiments on scales between 100 and 220 products
show that these approaches perform better than other baseline al-
gorithms. They are also able to transfer learning without retraining,
when the number of products change.

KEYWORDS

Reinforcement Learning; Supply Chain; Inventory Control

1 INTRODUCTION

Reinforcement Learning (RL) algorithms have been successfully
applied to a broad range of problems in literature, including virtual
gameplay [30, 47], physical systems such as autonomous driving
[44] and flight dynamics [36], and problems from the field of opera-
tions research [22, 55, 56]. An essential feature of these applications
is the ability to plan strategies that maximize a long term discounted
future reward under constraints. This property makes RL a natural
candidate for decision-making in supply chains, where the key com-
plexity is the large (and possibly variable) number of concurrent
decisions that need to be computed in each time period. We model
this scenario as a high-dimensional stochastic dynamical system,
in order to demonstrate that the subsequent RL formulation can
also be useful in related domains. The problem formulation and so-
lution discussed in this paper are part of a larger effort to introduce
autonomous, adaptive decision-making in retail supply chains [43].

Motivating example: In this paper, we demonstrate the ap-
plication of RL to a multi-product two-echelon retail inventory
management scenario, illustrated in Figure 1. A moderately large
retail business may be composed of approximately 1,000 stores,
with each store selling up to 100,000 product types. The inventory

Balaraman Ravindran
IIT Madras
Chennai, India
ravi@cse.iitm.ac.in

of products in each store is periodically replenished by trucks (for
example, once per day). The full range of products is carried from
the warehouse to the store on the same truck (or set of trucks),
which imposes total volume and weight constraints on the replen-
ishment decisions. There are multiple tradeoffs involved in this
process, including maintenance of minimum inventory, minimi-
sation of wastage due to products going past their sell-by dates,
fairness across the product range, and capacity sharing on the truck.

We focus on the last step in the supply chain, shown by the
shaded region in Figure 1: replenishment of products from the local
warehouse, in order to concurrently maintain inventory levels of
the entire product range within the store. Inventory within the
store is depleted by sale of products to customers, and through
wastage of perishables. Customer demand is stochastic, with noisy
predictions provided by an external forecasting system. Depleted
inventory is periodically replenished, with the quantity of each
product in each delivery being decided by the RL algorithm.

Modelling assumptions: Real-world operations in a retail sup-
ply chain are typically highly dynamic [13] , with ad-hoc coordi-
nation between the warehouse, store, and logistics/transportation
providers. In order to model the problem, we make some simplifying
assumptions.

Truck

Local ml“
L Warehouse | ~®~®— ®

S

|
T-k_R—l my

Store
Regional o
.._E Warehouse e
N
Ml _l Bl
[mm— Local ”l][“
Warehouse Truck L =1
Suppliers ~o~
uppliers a0 ST
Portion of interest in this study

Figure 1: Flow of products within a retail supply chain. The
goal is to maintain inventory of the full range of products in
the stores, while minimising costs. The present study consid-
ers the last step in the supply chain: movement of products
from local warehouse to the store.

e We assume that the prior steps in the supply chain are well
organized, so that the warehouse itself has sufficient inventory
of all products. This implies that the only constraints on the
quantity of replenished products are imposed by the volume and
weight constraints of the truck.

e We assume that each product has a fixed designated area for
display within the store, so that the maximum number of items
of each product that can be stocked is known in advance.
The volume and weight capacity of the truck for each time period
is assumed to be known in advance. In reality, the retailer may
decide to send additional truck(s) at the time of shipment, if the
demand for inventory is high enough. We do not handle this
corner case. Furthermore, we assume that deliveries happen after
fixed time intervals.

In this work, we assume that there is no lag between the computa-

tion of replenishment decisions and their implementation in the

store. This is merely a simplifying assumption for the purposes
of analysis. For handling a finite time lag, it is possible to use
estimated inventory levels of products by projecting their cur-
rent rate of sale. We have shown successful training in a simpler
version of the problem in prior work [2].

These assumptions allow us to formulate the problem from an
analytical perspective in Section 3, propose a reinforcement learn-
ing approach to learn replenishment policies in Section 4, and to
experiment with multiple instances (including transfer learning) in
Section 5. The simplified version of the problem is still a good ap-
proximation of reality, and results in policies that can be explained
and justified from an operational perspective.

Contributions: The principal contributions of this paper are (i)
formulating a parallelisable RL approach to solve the multi-product
constrained inventory management problem, (ii) including realistic
business goals such as availability of the entire range of products
and minimisation of wastage, and (iii) showing that the approach
and its learned policy can be transferred without additional train-
ing, for instances with a different number of products. A secondary
contribution is to emphasise the close relationship between the cur-
rent problem and the generic control problem in system dynamics.
We believe it is possible to use similar approaches for solving other
constrained resource allocation problems.

2 RELATED WORK

We classify prior literature related to this work into various cat-
egories, including the description and traditional approaches for
control of dynamical systems, data-driven approaches such as adap-
tive control, approximate dynamic programming (ADP) and imi-
tation learning (IL), decision-making approaches for supply chain
and inventory management, and the use of reinforcement learn-
ing in related problem areas. While the mathematical aspects of
these problems have been studied extensively, we posit that our
dimension-agnostic formulation of the problem (covered in Section
4) is novel in literature.

Control of dynamical systems: In Section 3, we show that
the inventory management problem is related to the multivari-
able dynamical system control problem. Dynamical systems are
typically distinguished based on the form of state that they aim
to control. The simpler form is a scalar state such as the rate of

a chemical reaction [17] or temperature of a boiler [28]. A more
complex version is the multivariable control problem, involving a
vector of (possibly interdependent) states. The evolution of the state
vector in the canonical multivariable system is modelled using ma-
trix differential equations [37]. The preferred control approach for
multivariable problems is to use a linear time invariant (LTI) model
of the system and to design a controller using classical methods in
the frequency domain or using state feedback [5, 16]. Non-linear
versions of the problem are solved using techniques such as sliding
mode [53] and model predictive control [29], while robust control
under stochastic disturbances is handled using techniques such
as Ho [11]. The key takeaway from these techniques is that they
address one complex aspect of the problem in isolation, focusing
on one of (i) stability and robustness, (ii) high dimensionality of
state space, or (iii) system identification. By contrast, we require
an approach that will handle all these aspects simultaneously. We
therefore turn to data-driven methods.

Data-driven control approaches: There exists a large volume
of existing literature on adaptive control [1, 19], where the control
law is defined as a functional relationship while the parameters
are computed using empirical data. However, adaptive control typi-
cally requires analytical models of the control and adaptation laws.
Approximate Dynamic Programming (ADP) [4, 38] has a similar
dependence on analytical forms of the value function, at least as
a weighted sum of basis functions. It also requires explicit state
transition probabilities and stage costs, which may not be available
in the current context. The closest form of ADP for problems of the
current type is the literature on Adaptive Critics [46], which has
considerable overlap with reinforcement learning.

ADP in the policy space solves the problem by using policy
gradients to compute the optimal policy parameters, each of which
defines a stationary policy. ADP has been used in prior literature for
relatively large task allocation problems in transportation networks
[15, 52]. These studies use non-linear approximations of the value
function, but the forms are still analytically described. Furthermore,
they require at least a one-step rollout of the policy. This may not
be feasible in the current context, since the dimensionality is high
and each action is continuous (or at least finely quantised), and the
goal is not to track some reference signal as in the standard linear
quadratic regulator (LQR) [37].

Imitation learning (IL) is a well-known approach for learning
from expert behaviour without having any need of a reward signal
and with the simplicity of a supervised learning. This approach
assumes that expert decisions have considered all the constraints
of the system in order to accomplish the objective. IL has been
used in variety of problems including games [40], 3D games [18],
and robotics [12]. The inherent problems of design complexity and
performance limitations apply here as well; to the definition of
the expert policy rather than to the IL algorithm. Additionally, the
general form of the problem may not admit an obvious expert policy
to train with.

RL techniques: Value based methods in reinforcement learning
are easy to use [30, 54], while Advantage Actor Critic (A2C) [25]
and Deep Deterministic Policy Gradients (DDPG) [27] have been
shown to work well on continuous action spaces. Trust Region
Policy Optimization [41] and Proximal Policy Optimization [42]
have also proven effective for optimal control using RL, but these are

on-policy computationally expensive algorithms and are difficult to
apply where episodes are not naturally finite-horizon. Branching
DON [50] is able to handle multiple actions, but has a significant
growth in complexity with the size of the state space. Recent work
on reducing the size of the action space by learning representations
of actions [8] is interesting, but it is not clear how to transfer
learning to instances of different scale. We do this by computing
individual actions separately (Section 4).

Inventory management: Supply chain control problems have
been extensively studied in operations research literature. Most
of the literature considers a two-echelon inventory management
problem with varying degree of complexity [26, 33, 34]. One major
challenge that prior work fails to address is handling multiple prod-
ucts simultaneously. Instances at relatively small scale are solved
as joint assortment-stocking problems using mixed-integer linear
programming [7, 49] and related techniques such as branch-and-cut
[9]. However, these techniques have large computation times and
are limited to problems with a handful of product types (fewer than
10) and short time horizons. Implementations at practical scales
typically operate with simple heuristics such as threshold-based
policies [10] or formulae based on demand assumptions [6, 48].

Adaptive critic [45] and reinforcement learning [14, 20, 31] ap-
proaches are also reported in literature, but again tend to focus
on single-product problems. Our prior work on a simpler version
of the problem [2] focussed on the use of a complex simulation
framework in a closed loop with RL for training. The model did not
explicitly incorporate system constraints (truck weight and volume
capacity), and the business objectives were quantified in simplified
form.

Related applications: In system dynamics, there is significant
work in the computation of torque commands for robotic applica-
tions [23, 24, 39, 51]. A number of these methods are model-based
[32], because of the availability of accurate dynamic models of the
robots. The curse of dimensionality often seen in these problems is
even more acute in the current context, because of the much higher
degrees of freedom. A recent approach for exploration in large state-
action spaces is learning by demonstration [35]. However, this too
requires an expert policy for imitation learning. Transportation
problems [3, 22] sometimes tackle the scalability issue by dividing
the global decision-making problem into smaller pieces, with both
local and global performance affecting the reward. We use a similar
approach in this work.

3 PROBLEM DESCRIPTION

We now describe a generic dynamical system control problem and
show that multi-product inventory management is a special case.
We also develop the equivalent reinforcement learning formulation,
while the specific solution approach is described in the next section.

Multivariable dynamical system control: Consider a sys-
tem with continuous-time dynamics, where inputs are provided
at discrete time intervals. This form captures a large variety of
real-world systems with digital controllers. The system dynamics
between two time steps are given by,

X(z) = F(x(2)) + w(z), 1)
where x is the vector of p state variables, F(x) : R — R isa
(possibly nonlinear) function, w is external noise, and z denotes

continuous time. The initial state x(0) is arbitrarily specified. The
control input is provided at discrete time intervals t. Without loss
of generality, let us assume that ¢ € I*, the set of positive integers.
The effect of control is an instantaneous change in the state x,

x(t)t =x(t)” + Bu(?). (2)

The control problem specifies that some objective r composed of
the system states x, a set of parameters 6, and a discount factor
Y, be maximised in the long term. Formally, we state this as the
computation of the optimal control vector u*(t) where,

u*(t) = arg max /OO Y r (k(2), u(?), 0) dz, (3)
¢
subject to h (x(¢),u(t)) < 0, g(x(t),u(t)) =0,

where %(z) is an estimate of the future state trajectory, h is a set of
inequality constraints on the values of the state and control inputs,
and g is a set of equality constraints. A typical definition of r is a
quadratic function composed of error with respect to a reference
state trajectory and the control effort expended. We assume that
system dynamics F are unknown but the control input matrix B
is known, and both F and B could in general be time dependent.
However, the variation in nature of F, B, and w is slow enough to
build reasonable estimators F and W, thus admitting an explicit or
implicit predictor for the trajectory % given historical values of x.
The noise statistics of w can be arbitrary.

The generic dynamics of system evolution and control input
given by (1) and (2), and the optimal control problem defined by (3),
together specify a broad class of control problems for dynamical
systems. For example, x could be the position and velocity of an
autonomous robot, while u is the force or acceleration input. We
now show how these relations can be framed as a standard RL
problem, and then specialize to the inventory management scenario.

Reinforcement learning formulation: The problem can be
modeled as a Markov Decision Process (S, A, 7, R, y), where S rep-
resents the state space defined by a feature map f(x) : RP — R™*P,
A denotes the decision or action space u(t) € RP, 7 represents
transition probabilities from one combination of state and action
to the next, R denotes the rewards, and y is the discount factor for
future rewards. Given the optimisation task as defined in (3), the
objective is equivalent to a discounted sum of aggregated discrete
rewards R(n),

Max: —/too Yo r (k(2),u(t), 0) dz

+1

= Max: Z (yn_t /" Y¥ " r (k(2),u(z), 0) dz
n=t n

Max: Z Yy I R(n). (4)
n=t

While (3) is a standard optimisation problem, the arbitrary nature
of F, B, and w, the possible nonlinearity of h and g, and the online
response requirement of computing u(t) makes it a difficult propo-
sition to solve using traditional approaches. Even with simple linear
forms of F, large dimensionality of x and u can make the problem
intractable. On the other hand, the reward structure (4) readily
admits the use of RL for computing the inputs u(t). Model-free RL
can implicitly model the estimator for noise as well as the future

state trajectory in order to maximise the discounted long-term re-
ward, requiring only (i) a feature set f(x) as the input, and (ii) a
mechanism (such as simulation) for rolling out the effect of actions
on the states in a closed-loop fashion.

Inventory management as a control problem: We instanti-
ate the generic system dynamics with a multi-product inventory
management scenario, illustrated in Figure 2. As mentioned before,
this is the last step of the retail supply chain from Figure 1. Our goal
is to maintain sufficient inventory levels of all products to ensure
availability for sale, while simultaneously minimizing wastage due
to spoiling of perishable products. The former objective is due to
business requirements, while the latter objective is directly linked
to incurred cost. We define the state x in (1) to represent the inven-
tory levels of all products. The depletion of inventory is modelled
by the system dynamics, with the sale of products representing the
noise variable w, and the spoiling of perishable inventory represent-
ing the internal dynamics F. The inventory has to be periodically
replenished in a quantity equal to the control variable u. Inequality
constraints are imposed by the maximum inventory levels of each
product as defined by available shelf space, and replenishment u in
each time step is constrained in terms of total weight and volume
by the load carrying capacity of the truck.

Each element x; of state x to be the inventory level of product i,
and the rate of product sales is the noise w > 0 (with a negative
sign, as in (5)). Inventory depletion due to spoiling of perishables is
assumed to be at a fixed proportional rate a; for each product. The
dynamics are thus F(x(z)) = Ax(z), where matrix A is a constant
diagonal matrix with entries —a;. Higher magnitudes of a; are for
products that perish correspondingly faster!. Since u(t) represents
the replenishment actions at time ¢, its dimension is equal to that of
x and B is the identity matrix. Recall that we denote continuous time
by z and the discrete instants of replenishment by t. The dynamics
are thus explicitly given by,

—ai 0

x(z) - w(z), ®)

X(z) = —-aj
0 N —ap
x®)t =x()” +u(1).

The inventory levels x; and control inputs u; are assumed to be
continuous variables, which is accurate when the products are in
liquid or gas form (for example, oil levels replenished periodically by
tankers). In the case of unit-based products (for example, groceries),
this assumption is approximately true as long as the maximum shelf
capacity is significantly larger than the size of individual units.

The inventory level of product i between two time periods can be
propagated by integrating relation (5), which depends on the noise
w(z). Note that the diagonal form of A implies that the inventory
equations can be solved independently between replenishment
instants. We assume that the integral of the noise (total sales) in
one time step is W;(t — 1) = /til wi(z)dz. Since the time period
is assumed to last one unit, the average rate of sale within the
time period is also equal to W;(¢ — 1), which we shorten to W; for
notational simplicity. Assuming that the rate W; is a constant in

!For products with fixed expiry dates, wastage happens at discrete time instants ¢ with
a; = 0. The quantity of wastage is known in advance, and can be absorbed in u(z).

w(z)

Orders
pemmmmmm-- %(2) !

Forecast [e=== Database

w(z):z€e[tt+1)

w(z):z € [0,t)

Figure 2: The inventory management problem.

a given time period, the rate of depletion for i is (—a; x; — W;).
Integrating (5) gives the inventory at the end of the time period,

xi(t)” =e Yixi(t -1t - ? (1-e7%). (6)
1

Since the inventory cannot be a negative value, we assume that
orders for any products that have no inventory are rejected and
therefore wi(z) = 0 Vz € [Z/,t) if x;(z’) = 0. We note that even
the functional form of the relationship (6) is not assumed known
to the RL agent. It must either model the state and control rela-
tionships explicitly, or use a model-free technique as described in
the next section. However, the relation (6) defines the state update
relationship for each product in the inventory, which we use in the
environment (simulation) portion of the RL algorithm. Assuming
that the inventory levels and control inputs are normalized to the
range [0, 1], the set of applicable constraints is as follows.

0<x(t)<1 7)
0<ut)<1 (8)
0<x(t)"+u(t)<1 9)
v u(t) < vmax (10)

cTut) < emax (11)

Here, constraints (7) and (8) are related to the range of acceptable
values of each product. Constraint (9) states that the level of inven-
tory just after replenishment (x(t)* according to (2)) cannot exceed
the maximum inventory level. Constraints (10) and (11) set maxi-
mum values on the total volume vmax and weight cmax of products
replenished at a single time step, mimicking transportation capacity
limitations. Column vectors v and c¢ are constants corresponding
to the unit volume and weight multipliers for each product.
Inventory management is a multi-objective optimisation prob-
lem, with direct costs relating to (i) the reduction of inventory for
some products to 0, commonly known as out-of-stock, and (ii) the
quantity gwaste,i(t) of products wasted (spoiled) during the time pe-
riod ending at ¢. In addition, we wish to ensure that some products
are not unfairly preferred over others when the system is stressed
(for example, when the capacities vmax and cmax are too small to
keep up with product sales). Therefore, we include a fairness penalty
on the variation in inventory levels across the product range, from
the 95t to the 51 percentile (denoted by Ax(t)'gg) across all prod-
ucts. The objective (reward) to be maximised is defined in (12). Since
no control intervention is allowed between two time intervals, all

the terms can be considered to be aggregate values received at time
t. The objective is defined by,

B Pempty(t) _ 2i Gwaste, i(t) B
p p

————— N e
Out of stock Wastage

R(t) =1 Ax(t)g: . (12)
————

Percentile spread

where p is the total number of products (size of), pempty(t) is the
number of products with x; = 0 at the end of the period [t — 1, t).
Since the maximum value of pempty(t) is equal to p, the maximum
value of qwaste,i(f — 1,¢) is 1, and the maximum difference in in-
ventory between two products is also 1, the theoretical range of
the objective/reward is —2 < R(t) < 1. For practical purposes, the
individual terms will be smaller than 1, and the majority of rewards
should be in the range [—-1, 1]. The goal of the algorithm is to maxi-
mize the discounted sum of this reward as per (4), at each time step
t, given the dynamics (5) and the constraints (7)-(11).

4 METHODOLOGY

Before describing the RL approach, we note that the order rate w(z)
plays a key role in the system dynamics (5)-(6). For simplicity, we
define an estimator for the sales rate w; of each product i in the
form of a trailing average of sales in the most recent T time periods,

ftt_T wi(z")dz’
T

There are several more sophisticated forecasting algorithms avail-
able in literature, but these are not the focus of this paper. Note that
all the competing algorithms tested in Sec. 5 use the same values of
forecast orders. Since we assume that each period lasts for a unit of
time, the forecast for aggregate orders, W;(t), is also given by (13).

The primary challenges in applying RL to this problem are (i)
the large number of products p, (ii) handling the shared capacity
constraints (10)-(11), and (iii) the fact that the number of products
can change over time. We describe an algorithm for parallelised
computation of replenishment decisions, by cloning the parameters
of the same RL agent for each product and computing each element
of the vector u(t) independently. The advantage of this approach is
that it splits the original problem into constant-scale sub-problems.
Therefore, the same algorithm can be applied to instances where
there are a very large (or variable) number of products. Despite
parallelisation, we handle the shared capacity constraints as follows.

Rewards: The key challenges with computation of individual
elements of u are (i) ensuring that the system-level constraints
(10)-(11) are met, and (ii) that all products are treated fairly. Both
challenges are partially addressed using the reward structure. The
fairness issue is addressed using the percentile spread term in (12),
since it penalises the agent if some products have low inventories
while others are at high levels. The volume and weight constraints
are introduced as soft penalties in the following ‘per-product’ re-
ward definition, adapted for individual decision-making.

Wiz) = Vzel[tt+1)ie{l,....p}. (13)

Ri(t) =1 - bi,empty(t) - CIwaste,i(t)
- Ax(t):gg — a max(p — 1,0), (14)

where b; empty(t) is a binary variable indicating whether inventory
i dropped to 0 in the current time period, @ is a constant parameter,

Table 1: Per-product features used in the RL framework.

Notation | Explanation
x;i(t) Current inventory level
W;(t) Forecast aggregate orders in [¢, + 1)
oj Historical std. dev. in forecast errors for i
v; Unit volume
ci Unit weight
l; Shelf life
vIW(t) Total volume of forecast for all products
T W) Total weight of forecast for all products

and p is the ratio of total volume or weight requested by the RL
agent to the available capacity. We formally define this as,
(VT u(t) of u(t))
p =max | ——, ——|.
Umax Cmax

Equation (14) defines the reward that is actually returned to the RL
agent, as opposed to the true system reward defined in (12). If the
aggregate actions output by the agent (across all products) do not
exceed the available capacity (p < 1), then the average value of (14)
is equal to (12). This implies that maximising R;(t) is equivalent
to maximising R(#), as long as system constraints are not violated.
The last two terms of (14) are common to all products at time ¢.

States and actions: Table 1 lists the features used for computing
the replenishment quantity for each product. The first two features
relate to the instantaneous state of the system with respect to
product i. The next four inputs are product meta-data, relating
to either long-term or constant behaviour. The quantity o; is the
standard deviation of forecast errors for that product, computed
using historical data. Similarly, the shelf life [; is the normalized
inverse of the average inventory loss for product i (the decrease in
inventory not accounted for by orders, in a given time period). This
is also computed empirically, and acts as an implicit estimator for
the dynamics A.

The meta-data distinguish between different product character-
istics when they are processed sequentially by the same RL agent,
by mapping individual products to the same feature space. The last
two features in Table 1 are derived features that provide indica-
tions of total demand on the system, with respect to the various
constraints. These indicators act as inhibitors to the control action
for product i, if the total demand on the system is high. They also
help the agent correlate the last term in the observed rewards (the
capacity exceedance penalty) with the state inputs. The output of
the RL agent is u;(t), which is the desired action for product i at
time t. Individual actions are concatenated to form u(t), accoring
to the workflow shown in Figure 3.

Neural network architecture: The computation of u;(¢) is
carried out using advantage actor critic (A2C) [25] as well as Deep
Q-Network (DQN) [30]. This description covers A2C, with the
understanding that DQN is similar but without a separate actor and
critic. The critic network accepts the 8 features from Table 1 as input,
contains one hidden layer with 4 tanh neurons, and produces a
scalar value output. The network is trained using stochastic gradient
descent with a learning rate of 0.025, momentum of 0.8, a batch
size of 32 samples, and mean squared loss with respect to the TD(0)
error. The actor network processes the same 8 inputs as the critic,

but its output is a probability distribution over a user-defined set of
quantized actions between 0 and 1. In general, the output layer could
be any set of n quantized action values. Because of the larger output
size, the actor network has two hidden layers with 2n neurons each.
The hidden layers have tanh activation while the output layer has
relu activation. Its training methodology is mildly modified from
standard A2C, as described below.

Modified training approach: The TD(0) discounted reward
is used to compute the advantage J; for product i with respect to
the value estimate. Intuitively, a positive §; should encourage the
actor to increase the probability of choosing the same action again.
However, a subtle difference exists between the outputs of a typical
discrete choice problem (such as classification) and the current
problem. In our case, the outputs map to specific scalar values, and
neighbouring outputs correspond to similar actions. Therefore, a
loss function such as cross-entropy is not used here, and we also
forgo the usual policy-gradient based training methodology for
the actor. Instead, we use a mean square loss with respect to an
adjusted probability distribution as follows.

Let us assume that the chosen output for a product i is j with
an activation a(j), and the realized actor delta from the TD(0) trace
is §;. Then the target value of each action j* € {1,...,n} is set
to (a(j*) + m) The target vector is then re-normalized
to sum up to 1, and the actor is trained using a mean square loss
compared to this updated and smoothed vector. The action corre-
sponding to each product in each time period is stored as a unique
sample in an experience buffer, with batch training after every 32
time periods of 32p samples. The combined vector of desired con-
trol actions is denoted by u. Since the output actions are rectified
linear units (relu), these actions need not satisfy constraints (8)-(11).
Therefore, a constrained version of the control action is calculated
in two steps. First, u;(2) is clipped to a maximum of (1 — x;(¢)), in
order to satisfy (8) and (9). Second, constraints (10) and (11) are
enforced by proportionally reducing the desired quantities,

Umax Cmax
—_—, . 15
vIiu(t) T u(t) (15)

Ucon(t) = u(t) - min (17

The capacity exceedance penalty according to p ensures that this
reduction to feasible values is part of the training rewards for the
RL algorithm, and is rarely required after training.

OFFLINE

R; from previous step

] o |
Critic

u;

Combined state

t-o>t+1

Vmax ’ Cmax
constraint

Parallelise II

State
per product

ONLINE

«%‘@‘

D

Actions u;

Experience buffer Control vector

Figure 3: Workflow of RL computation and training, shown
for A2C [25]. The left half of the figure operates offline, for
training. Online decisions require only the right half.

5 EXPERIMENTS AND RESULTS

We describe experimental results on using the RL approach and
other baselines, on data derived from a public source [21]. The data
sets were prepared as follows.

5.1 Data for experiments

We use a public data set for brick and mortar stores [21] as the basis
for the experimentation. The original data set includes purchase
data for 50,000 product types and 60,000 unique customers. How-
ever, it does not contain meta-data about the products (dimensions,
weight) and also does not specify date of purchase (although it
specifies time of day and the day of week). Instead, it measures
the number of days elapsed between successive purchases by each
customer. We obtain data in the format required by the current
work, by assigning a random date to the first order of each unique
customer while respecting the day of week given in the original
data set. This implicitly assigns specific date and time stamps to
each purchase. Additionally, we assign dimension and weight to
each product type based on the product description. Since this is a
manual process, we only use two independent subsets of 220 and
100 products respectively from the full data set, from products listed
under the ‘grocery’ category.

The data set thus formed spans a period of 349 days. We assume
that stock replenishment happens 4 times a day, resulting in 1396
time periods. Of these, we use the first 900 time periods for training,
and use the final 496 time periods for testing. The semi-synthetic
data sets with 220 and 100 product types are used for comparison
against other approaches. In both cases, the volume and weight
constraints (vmax and cmax) are set slightly lower than the average
sales volume and weight, ensuring that constraints (10)-(11) are
active.

5.2 Baseline algorithms

The two RL approaches that we use are DQN and a slightly modi-
fied A2C (which we call A2C_mod), as described in Section 4. For
comparison, we also use A2C without modification and a categori-
cal cross-entropy loss (called A2C_cat), DDPG [27] with a single
continuous action output, and a standard heuristic from supply
chain literature, based on proportional control [37].

Heuristic based on proportional control: We use a modified
version of s-policy [34], a standard heuristic in literature which
aims to maintain inventory at some predefined constant level. If
we define x* to be the target level of inventories for the products,
the desired replenishment quantity is designed to satisfy forecast
sales and reach x* by the end of the time period. The expression is
given by,

upr(t) = max [0,x* + W(t) — x(t)7] . (16)
The desired action uy,(t) according to (16) satisfies constraints (8)
and (9), since 0 < x* < 1. However, it is not guaranteed to satisfy
the total volume and weight constraints (10) and (11). Therefore,
the final control vector is computed by proportional reduction
analogous to (15).

Other RL approaches: We use two types of related RL ap-
proaches in addition to A2C_mod and DQN, for performance com-
parison. In order to ensure fairness, we retain the same input and
output schema and sales forecast values for all algorithms. The

closest related approach is to use vanilla A2C with categorical
cross-entropy loss. Second, we implement DDPG [27] which is
based on the A2C framework and has continuous action output.
We provide the same state as provided in the A2C method to the
actor, which outputs replenishment quantities for each product.
The weights of actor and critic are shared between all products for
fairness. During training, product indices are randomly shuffled to
negate any ordering biases.

5.3 Results

We ran each algorithm for 600 training episodes, each containing
the 900 time steps in training data. Various initial inventory levels
were tried, and the results were largely invariant (the effect of
initial state quickly diminishes in a 900-step episode). The training
progress of A2C_mod is shown in Figure 4. Of key interest are the
curves for ‘business reward’, which is the overall system reward
based on (12), and the ‘internal reward’, which is the average per
product as per (14). As training progresses, the algorithm learns
to minimise the difference between the two curves, by minimising
capacity overshoot (based on p). It also learns to reduce the average
inventory levels so as to minimise wastage, while keeping them
above the stock-out level 6.

Training comparison: The average rewards as per (12) for all
competing algorithms over the course of training (first 900 time
periods) on the 220-product data set, are shown in Figure 5. The
results on the independent test data set (last 496 time periods) are
compiled in Table 2. A2C_mod has the fastest growth in reward,
while DQN does the best over 600 episodes. The heuristic has no
training, and its performance is thus flat. A2C_cat differs only in the
loss function from A2C_mod, but the performance gap is persistent.
It also retains a high degree of variance towards the end of training.
DDPG converges to the lowest reward on both training and test
data in 600 episodes. We observed that DDPG also converges to
a similar reward (0.69) if trained for 7500 episodes (12 times the
training in Figure 5). The slow nature of convergence may be due
to the greater degree of freedom, since it has a continuous output
in contrast to the discrete choices available for A2C and DQN.

Transfer learning: The key advantage of the parallelised de-
cision computation described in Section 4, is that the models are
able to handle a change in the number of products without re-
training. Figure 6 shows the rewards within a single episode for
the heuristic and for A2C_mod trained on 220 products, for an
instance where only 200 products are active. The truck volume
and weight capacity have been proportionally scaled. We observe
that A2C_mod is able to generate a consistently higher reward

Table 2: Training and test performance on 220 products.

Model Training Testing
A2C_mod (600 episodes) 0.709 0.723
DOQN (600 episodes) 0.757 0.737
A2C_cat (600 episodes) 0.671 0.718
DDPG (7500 episodes) 0.692 0.702
Heuristic (no training) 0.63 0.607

= BusinessReward
= InternalReward
= Epsilon

= Avglnventory

Value
o
N

o o
o =]

600

N
Episodes

Figure 4: A2C_mod during training on 220 products.

0.8
g 6 £ R P
S o :
]
= 0.5 /f, Models
& 04 ~ A2C_cat
o 0.3 = A2C_mod
7 - DDPG
@ 02 - BN
‘® e | o at = Heuristic
é 0.1 . AP
0.0 :
o m\.‘wﬂ |
! gy
-0.2 <
0 200] 400 600
Episodes
Figure 5: Training comparison for all algorithms.
1.0
£
3
0.8
[}
=
<
>
0.6
N
0.4
o o o o
n o wn
. o
Time Period

= Heuristic = A2C_mod_trained220

Figure 6: Rewards across 900 DMs over 200 Products

0.9
0.8
()
0.7
m N
>
0.6
0.5
o o o o
n o wn
) 0
Time Period

= Heuristic = A2C_mod_trained220

Figure 7: Rewards across 900 DMs over 100 Products

A2C_mod

A2C_cat

51 -
61 -

Current Inventory

DDPG

Critic Estimati

Current Inventory

Figure 8: Critic estimate as a function of inventory and forecast.

0.
0.
0. -
0. E
o]
0.]
0]
s o .
2 J
0.]
0]
0 i
0 i
[T R B A B B N R R R B
MNOOHHNMTINON0 O O-HANMITNONOD
..... MNITSNOORRDONG OeHNNMMS S
[=lelelololololofa) [elololololololala)
Current Inventory
A2C_mod A2C_cat
0.0
0.02
0.04
0.06
0.08
- 0.1
Q012
g o
0.16
S 018
[0.2
0.2
0.2
0.2
0.2
o.

SSdScoooS oS aS

Current Inventory Current Inventory

00-" ' 't 11

DQN

DDPG

1.0
.
-0.6
-0.4

-

Mean Replenishment Quantity

0.0 ' 1t

Current Inventory Current Inventory

Figure 9: Mean replenishment quantity across products as a function of inventory and forecast.

than the heuristic. The difference is even clearer in Figure 7, where
the completely independent set of 100 products (second data set)
is being replenished. These results demonstrate the model’s capa-
bility to handle the variable-dimensional aspect of the inventory
management problem.

Quantifying value learning: Value predictions produced by
the critic networks for A2C_mod, A2C_cat, and DDPG are shown
in Figure 8. The DDPG outputs are generated after 7500 training
episodes. The two A2C-based methods have broadly similar value
estimates, with the highest values seen for low forecast and mod-
erately low inventory levels. The worst values for A2C are near
the top right, where forecast is low while inventory is high. There
is no action available to address this problem (cannot artificially
reduce inventory levels), which leads to high wastage. The lowest
values for DDPG are for low inventory and high forecast (bottom
left). This is also an undesirable state, but it can be fixed by a large
replenishment action. Note that the DDPG value is based on both
state and action, while the A2C values are based only on state.

Quantifying policy learning: Figure 9 compares the requested
replenishment action as a function of two features (current inven-
tory and forecast), averaging over all other feature values. We note
that A2C_cat has sharp edges in the policy, indicating that the
actions are based primarily on inventory and forecast. The other
three approaches have broadly similar policies, with DON having
the smoothest variation. This could be the reason for its advantage
over all other methods in training as well as test data.

6 CONCLUSION

The key takeaway from the results is that while each RL approach
has its advantages and disadvantages (stability, ease of training),

the parallelised decision-making framework is able to yield high
solution quality with low online computational cost, and is also able
to learn to stay within the aggregate system capacity constraints.
Given the broader class of problems from which we derived the
multi-product inventory management scenario, we wish to identify
problems in related areas that can be solved using a similar RL
approach. In addition, we also wish to extend the current store
inventory management capabilities with a multi-agent approach
for supply chain decision making, encompassing warehouse and
transportation management.

REFERENCES

[1] KarlJ Astrom and Bjérn Wittenmark. 2013. Adaptive control. Courier Corpora-
tion.

[2] Souvik Barat, Harshad Khadilkar, Hardik Meisheri, Vinay Kulkarni, Vinita Bani-
wal, Prashant Kumar, and Monika Gajrani. 2019. Actor Based Simulation for
Closed Loop Control of Supply Chain using Reinforcement Learning. In Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems. International Foundation for Autonomous Agents and Multiagent Sys-
tems, 1802-1804.

[3] Ana LC Bazzan and Franziska Kliagl. 2013. Introduction to intelligent systems in

traffic and transportation. Synthesis Lectures on Artificial Intelligence and Machine

Learning 7, 3 (2013), 1-137.

Dimitri P Bertsekas. 2005. Dynamic programming and optimal control, Chapter 6.

Vol. 1. Athena scientific Belmont, MA.

Samir Bouabdallah, Andre Noth, and Roland Siegwart. 2004. PID vs LQ control

techniques applied to an indoor micro quadrotor. In Proc. of The IEEE International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2451-2456.

Gfirard Cachon and Marshall Fisher. 1997. Campbell soup’s continuous replen-

ishment program: evaluation and enhanced inventory decision rules. Production

and Operations Management 6, 3 (1997), 266-276.

Felipe Caro and Jérémie Gallien. 2010. Inventory management of a fast-fashion

retail network. Operations Research 58, 2 (2010), 257-273.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip S

Thomas. 2019. Learning action representations for reinforcement learning. arXiv

preprint arXiv:1902.00183 (2019).

—
B

[5

[6

—
)

[8

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19

[20]

[21]
[22]

[23]

[24]

[25

[26]

[27

[28]

[29

[30

[31]

[32

[33

Leandro C Coelho and Gilbert Laporte. 2014. Optimal joint replenishment,
delivery and inventory management policies for perishable products. Computers
& Operations Research 47 (2014), 42-52.

Cosmin Condea, Frédéric Thiesse, and Elgar Fleisch. 2012. RFID-enabled shelf
replenishment with backroom monitoring in retail stores. Decision Support
Systems 52, 4 (2012), 839-849.

John C Doyle, Keith Glover, Pramod P Khargonekar, and Bruce A Francis. 1989.
State-space solutions to standard H/sub 2/and H/sub infinity/control problems.
IEEE Trans. on Automatic control 34, 8 (1989), 831-847.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. 2017. One-Shot Imitation
Learning. In NIPS, Vol. 31.

John Fernie and Leigh Sparks. 2018. Logistics and retail management: emerging
issues and new challenges in the retail supply chain. Kogan page publishers.
Ilaria Giannoccaro and Pierpaolo Pontrandolfo. 2002. Inventory management
in supply chains: a reinforcement learning approach. International Journal of
Production Economics 78, 2 (2002), 153-161.

Gregory A Godfrey and Warren B Powell. 2002. An adaptive dynamic program-
ming algorithm for dynamic fleet management, I: Single period travel times.
Transportation Science 36, 1 (2002), 21-39.

F Golnaraghi and BC Kuo. 2010. Automatic control systems. Complex Variables 2
(2010), 1-1.

Tore K Gustafsson and Kurt V Waller. 1983. Dynamic modeling and reaction
invariant control of pH. Chemical Engineering Science 38, 3 (1983), 389-398.
Jack Harmer, Linus Gisslen, Jorge del Val, Henrik Holst, Joakim Bergdahl, Tom
Olsson, Kristoffer Sjoo, and Magnus Nordin. 2018. Imitation Learning with
Concurrent Actions in 3D Games. arXiv preprint arXiv:1803.05402 (2018).
Petros A Ioannou and Jing Sun. 1996. Robust adaptive control. Vol. 1. PTR
Prentice-Hall Upper Saddle River, NJ.

Chengzhi Jiang and Zhaohan Sheng. 2009. Case-based reinforcement learning for
dynamic inventory control in a multi-agent supply-chain system. Expert Systems
with Applications 36, 3 (2009), 6520-6526.

Kaggle. Retrieved 08-2018. Instacart Market Basket Analysis Data. https://www.
kaggle.com/c/instacart-market-basket-analysis/data. (Retrieved 08-2018).

H. Khadilkar. 2019. A Scalable Reinforcement Learning Algorithm for Scheduling
Railway Lines. IEEE Transactions on Intelligent Transportation Systems 20, 2 (Feb
2019), 727-736.

Jens Kober,] Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),
1238-1274.

Nate Kohl and Peter Stone. 2004. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, Vol. 3. IEEE, 2619-2624.

V Konda and J Tsitsiklis. 2000. Actor-critic algorithms. In Advances in Neural
Information Processing Systems. 1008-1014.

Hau L Lee and Corey Billington. 1993. Material management in decentralized
supply chains. Operations research 41, 5 (1993), 835-847.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. CoRR abs/1509.02971 (2015).

X-J Liu and CW Chan. 2006. Neuro-fuzzy generalized predictive control of boiler
steam temperature. [EEE Transactions on energy conversion 21, 4 (2006), 900-908.
David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert.
2000. Constrained model predictive control: Stability and optimality. Automatica
36, 6 (2000), 789-814.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep RL. Nature 518, 7540
(2015), 529

Ahmad Mortazavi, Alireza Arshadi Khamseh, and Parham Azimi. 2015. Designing
of an intelligent self-adaptive model for supply chain ordering management
system. Engineering Applications of Artificial Intelligence 37 (2015), 207-220.
Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. 2018.
Neural network dynamics for model-based deep RL with model-free fine-tuning.
In ICRA. IEEE, 7559-7566.

Steven Nahmias and Stephen A. Smith. 1993. Mathematical Models of Retailer
Inventory Systems: A Review. Springer US, Boston, MA, 249-278. https://doi.org/

[34

[35

&
2

[42

[43

[44

=
&

[46

[47

[48

[49

[51

[52

[53

(54]

[56

10.1007/978-1-4615-3166-1_14

Steven Nahmias and Stephen A Smith. 1994. Optimizing inventory levels in a
two-echelon retailer system with partial lost sales. Management Science 40, 5
(1994), 582-596.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. 2018. Overcoming exploration in reinforcement learning with demon-
strations. In ICRA. IEEE, 6292-6299.

Andrew Y Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben
Tse, Eric Berger, and Eric Liang. 2006. Autonomous inverted helicopter flight via
reinforcement learning. In Experimental Robotics IX. Springer, 363-372.

K Ogata and Y Yang. 2002. Modern control engineering. Vol. 4. Prentice Hall.
Warren B Powell. 2007. Approximate Dynamic Programming: Solving the curses

of dimensionality. Vol. 703. John Wiley & Sons.

Warren B Powell. 2012. Al OR and control theory: A rosetta stone for stochastic
optimization. Princeton University (2012).

Stéphane Ross and J. Andrew Bagnell. 2010. Efficient Reductions for Imita-
tion Learning. In Proc. of The International Conference Artificial Intelligence and
Statistics (AISTATS).

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International Conference on Machine
Learning. 1889-1897.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

Dheeraj Shah. 2020. The Six Aces to Thrive in Supply Chain 4.0. (January 2020).
https://www.tcs.com/blogs/six-aces- to- thrive-in-supply-chain-4-0

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv preprint
arXiv:1610.03295 (2016).

Stephen Shervais, Thaddeus T Shannon, and George G Lendaris. 2003. Intelligent
supply chain management using adaptive critic learning. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans 33, 2 (2003), 235-244.
Jennie Si, Andrew G Barto, Warren B Powell, and Don Wunsch. 2004. Handbook
of learning and approximate dynamic programming. Vol. 2. John Wiley & Sons.
David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

Edward A Silver. 1979. A simple inventory replenishment decision rule for a
linear trend in demand. Journal of the Operational Research society 30, 1 (1979),
71-75.

Stephen A Smith and Narendra Agrawal. 2000. Management of multi-item retail
inventory systems with demand substitution. Operations Research 48, 1 (2000),
50-64.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. 2018. Action branching
architectures for deep reinforcement learning. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. 2010. Reinforcement
learning of motor skills in high dimensions: A path integral approach. In Robotics
and Automation (ICRA). IEEE, 2397-2403.

H Topaloglu and W Powell. 2006. Dynamic-programming approximations for
stochastic time-staged integer multicommodity-flow problems. INFORMS Journal
on Computing 18, 1 (2006), 31-42.

Vadim Utkin, Jurgen Guldner, and Jingxin Shi. 2009. Sliding mode control in
electro-mechanical systems. CRC press.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In AAAL Vol. 2. Phoenix, AZ, 5.

Richa Verma, Sarmimala Saikia, Harshad Khadilkar, Puneet Agarwal, Ashwin
Srinivasan, and Gautam Shroff. 2019. An RL Framework for Container Selection
and Ship Load Sequencing in Ports. In International conf. on autonomous agents
and multi agent systems.

W Zhang and T Dietterich. 1995. A reinforcement learning approach to job-shop
scheduling. In International Joint Conference on Artificial Intelligence. Montreal,
Canada.

https://www.kaggle.com/c/instacart-market-basket-analysis/data
https://www.kaggle.com/c/instacart-market-basket-analysis/data
https://doi.org/10.1007/978-1-4615-3166-1_14
https://doi.org/10.1007/978-1-4615-3166-1_14
https://www.tcs.com/blogs/six-aces-to-thrive-in-supply-chain-4-0

	Abstract
	1 Introduction
	2 Related work
	3 Problem description
	4 Methodology
	5 Experiments and results
	5.1 Data for experiments
	5.2 Baseline algorithms
	5.3 Results

	6 Conclusion
	References

