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ABSTRACT

In typical Multi-Agent Reinforcement Learning (MARL) settings,
each agent acts to maximize its individual reward objective. How-
ever, for collective social welfare maximization, some agents may
need to act non-selfishly. We propose a reward shaping mechanism
using extrinsic motivation for achieving modularity and increased
cooperation among agents in Sequential Social Dilemma (SSD) prob-
lems. Our mechanism, inspired by capitalism, provides extrinsic
motivation to agents by redistributing a portion of collected re-
wards based on each agent’s individual contribution towards team
rewards. We demonstrate empirically that this mechanism leads to
higher collective welfare relative to existing baselines. Furthermore,
this reduces free rider issues and leads to more diverse policies. We
evaluate our proposed mechanism for already specialised agents
that are pre-trained for specific roles. We show that our mechanism,
in the most challenging CleanUp environment, significantly out-
performs two baselines (based roughly on socialism and anarchy)
and accumulates 2-3 times higher rewards in an easier setting of
the environment.
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1 INTRODUCTION

A key reason why society has flourished is the ability of its con-
stituents to coordinate and cooperate. In our daily lives, we often
encounter tasks which are too complex for an individual or machine
to solve alone. Coordination among groups is often needed to sur-
mount hurdles, parallelize repetitiveness, and blend complementary
strengths to collectively accomplish a wider range of tasks. This
problem of establishing coordination in the context of autonomous
agents has remained a challenging feat. If an agent greedily chooses
to optimize their own gain, we may reach sub-optimal outcomes
for the community as a whole [12]. A subset of problems requir-
ing agents that are not fully selfish is Sequential Social Dilemmas
(SSDs), where there is a conflict between individual and collective
interest.

We believe that a set of rules or a social structure built on top of
the environment is key to achieving coordination in such problems,
and hence better performance on the task at hand. Human models
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of governance can provide inspiration in terms of structures that
can be used to ensure appropriate multi-agent coordination. In this
work, we look at the environment and all the agents in analogy to
a country and its citizens. The ‘government’ wants to maximize the
GDP (Gross Domestic Product) or sum of rewards of all agents, as
opposed to individual gain/rewards. However, to incentivize agents
to work together is a complicated task. There are many questions
that arise while trying to develop such a framework. Is there a need
for a leader or influencer that masses follow to achieve a common
goal? Can such a leader naturally evolve or must we introduce
some form of extrinsic reward or artificial competition? Is there a
need for trust (or maintaining a model of other agents)? Can agents
realize if there is an adversary in the team and learn to ignore them
or attenuate their negative effect? Finally, how do we go about
solving coordination in a setting in which different agents might
want to optimize policies which are driven by different incentives?

In the quest to answer the aforementioned questions, we pro-
pose a unified method for achieving coordination and cooperation
among the agents by incentivizing the agents to behave in a selfless
manner using extrinsic rewards enforced by an imaginary form of
government or social structure. Extrinsic motivation [2] is a means
of influencing actions by some specific rewarding outcome. Our ap-
proach borrows key concepts from the capitalistic economic model,
such as taxation, and employment, to provide a way of delivering
such rewards.

To demonstrate our approach, we use the Cleanup environment
[6]—a public goods dilemma in which agents are rewarded for
consuming apples, but they must clean a river in order for apples to
grow, an activity which yields no reward. To facilitate cleaning of
the river, a portion of the rewards collected by the agents are taxed
and redistributed among cleaners proportional to the work they do.
We call this the “capitalistic” approach. In our experiments, we also
consider a variant of this approach in which agents are pre-trained
to perform specialized roles (denoted by cleaning and harvesting),
and we observe that the agents learn to coordinate better and faster
after this pre-training phase, which leads to better social welfare
compared to other approaches.

The main contributions of the paper are:

e We formulate a reward-shaping mechanism using extrinsic
motivation, for achieving modularity and increased coop-
eration among agents in Sequential Social Dilemma (SSD)
problems, without any communication overhead.



e We evaluate this approach by pre-training agents to perform
specific roles, which increases the speed of learning drasti-
cally and also improves the coordination amongst them.

2 RELATED WORK

The problem of achieving coordination in the setting of Multi-
Agent Reinforcement learning [19] has been explored in various
applications, including autonomous vehicles [22], traffic control
[4, 23], distributed network systems [10, 13], multi-robot control
[7, 16], multi-player games [20], and more. The cooperative MARL
problem can be attacked using a centralized approach, thus reduc-
ing the problem to single-agent reinforcement learning over the
observations and actions of all agents. Such approaches assume
that a central controller has access to all the required information
about all the agents instantaneously (which is not practical) and
suffers from a combinatorial explosion as the number of agents
grows. Some recent works [5, 14] use centralized training and de-
centralized execution approaches, allowing the policies to use extra
information at training time, in order to simplify the learning prob-
lem. In the decentralized approaches, the agents only have a partial
view of the world and the environment becomes non-stationary
from an agent’s perspective. Therefore, the agents must discover
some form of communication protocol or signalling mechanism
that enables them to coordinate their behaviour and solve the task.
Moreover, it is possible to maintain an approximation of the other
agents’ policies and train a collection of different sub-policies to
stabilize learning as shown in [14]. In [5] error derivatives between
agents are back-propagated through the communication channels.
In [24] a decentralized actor-critic method is used, where the actor
step is performed independently, whereas, for the critic step, they
propose a consensus update via communication over the network.
Learning meaningful emergent communication protocols is very
difficult and challenging due to limited communication channels,
inaccurate credit assignment, partial observability, unreliable esti-
mates of other agents, as was empirically shown by [1, 5, 11]. In
our approach, no agent needs to have information/estimates of the
observations, policies, or actions of other agents.

Recently, there have been few works that employ reinforcement
learning to maximize social welfare in SSDs—[12] shows how con-
flict can emerge from competition over shared resources and shed
light on how the sequential nature of real world social dilemmas
affects cooperation. The authors in [6] show that the collective
reward obtained by a group of agents in SSDs gives a clear signal
about how well the agents learned to cooperate. They introduce
an inequity aversion motivation, which penalizes agents if their
rewards differ too much from those of the group. In [3] agents are
categorized as imitators and innovators. Innovators learn purely
from the environment reward. Imitators learn to match the social-
mindedness level of innovators, demonstrating reciprocity. They
employ a niceness network using the advantage function to calcu-
late the niceness of an agent’s action(s) or trajectory. The authors in
[8] empirically show that coordination can be achieved by reward-
ing agents for having causal influence over other agents’ actions
and prove that it is equivalent to rewarding agents for having high
mutual information between their actions. We use a slightly dif-
ferent approach, relying on extrinsic motivation to influence the

behavior of agents. This is computationally more efficient than the
approaches discussed above, as the actions are based only on the
state observed by the agent and do not depend on counterfactual
reasoning or mutual information, which require conditioning on
the actions of other agents too.

3 BACKGROUND
3.1 Sequential Social Dilemmas (SSD)

A social dilemma is a situation in which individual selfishness yields
a profit, until everyone chooses a selfish strategy, in which case all
parties incur a loss. This imposes tensions between collective and
individual rationality [21]. Each agent ideally wants to maximize
their individual reward objective, but for collective social welfare
maximization, some agents may need to act non-greedily with
respect to their reward objectives. An individual agent can obtain
higher reward in the short-term by engaging in non-cooperative
behavior (and thus is greedily motivated to defect); however this
will cause other agents to defect as well, leading to lower overall
rewards. In many practical MARL applications, optimizing for the
team’s mission is more important than individual reward, hence
defection can be quite damaging to overall reward.

Social dilemmas can be well understood from the theory of re-
peated general-sum matrix games. Specifically, consider a matrix
game with the following properties of its four payoffs (Reward,
Punishment, Sucker, and Temptation,) (formulated by [15]):

(1) R > P : Mutual cooperation is preferred to mutual defection

(2) R > S : Mutual cooperation is preferred to unilateral coop-
eration

(3) 2R > T + S : Mutual cooperation is preferred to an equal
probability of unilateral cooperation and defection

(4) T > R: [Greed] Unilateral defection is preferred to mutual
cooperation

(5) P > S : [Fear] Mutual defection is preferred to unilateral
cooperation

where R is the reward for cooperation, P is the punishment for
defection, S is the sucker outcome for a player who cooperates with
a defector, and T is the temptation outcome achieved by defecting
against a cooperator.

3.2 Multi-Agent Reinforcement Learning for
SSDs

A MARL Markov game is defined by the tuple (S, T, A, r), where
each agent is trained independently to maximize its individual
reward. The state of the environment at timestep ¢ is defined by
s¢ € S. Furthermore, each agent k selects an action af € Aat
timestep t. The joint action of all N agents a; = [a(t), a% ....af‘v] pro-
duces a transition T (s¢+1]at, $¢), according to the state transition
distribution. Each agent receives a reward rg (at, s¢), which may
be dependent on actions of other agents. The trajectory over time
is denoted 7 = {s¢, ay, rt}z;o.

We consider a partially observable setting in which the k"
agent can only view a portion of the true state, sf . Each agent
seeks to maximize its own total expected discounted future reward,
Rk = Yieo yirf_'_i, where v is the discount factor.



3.3 Asynchronous Advantage Actor-Critic
(A3C) Algorithm

In our work, a distributed asynchronous advantage actor-critic
(A3C) approach will be used to train each agent j’s policy ;. A3C
[17] was formulated to maintain a policy 7 (a¢|s¢; €) and an esti-
mate of the value function V(s¢; ¢). The algorithm operates in the
forward view and uses the n-step return to update both the policy
and the value function. The update performed by the algorithm af-
ter every fmax Steps is seen as Vgr log 7 (at|s¢; 07) X A(st, ar; 0, @)
where A(s¢, ag; 0, ¢) is the estimate of the advantage function de-
fined by Zi.:ol pixX re + yk XV (sters P) — V(st; ¢), where k is
upper bounded by #yax. The algorithm comprises parallel actor-
learners and accumulated updates for improving training stability
(see Figure 2). Even though the parameters 6 of the policy and ¢
of the value function are shown as being separate for generality,
in practice the policy and value function usually share a common
layer of features. We use the same Actor and Critic Networks as [8]
consisting of a convolutional layer, some fully connected layers, a
Long Short Term Memory (LSTM) recurrent layer and some linear
layers. All networks take images as input and output both the policy
7j and the value function V7% (s).

4 ENVIRONMENT

In the Cleanup environment [6] (Figure 1) the goal of the agents
is to collect apples. Each apple collected provides a reward of +1
to the agent which collects it. Apples spawn at a rate proportional
to the cleanliness of the river. Over time, this river fills with waste,
lowering the rate of apple spawning linearly. The agents can take
actions to clean the waste, which provides no reward but is required
to generate any apples. Therefore, the agents must be able to coor-
dinate cleaning the river and collecting apples in order to maximize
their social welfare. The episode ends after 1000 steps, and the map
is reset to a random initial state. If some agents are contributing
to the social good by clearing waste from the river, there is an
incentive to stay in the region where the apples grow to collect
apples as they spawn. However, if all players adopt this strategy,
then no apples spawn and there is no reward for any agent.

5 APPROACH

In environments exhibiting SSDs, allowing agents to learn their
policies individually can severely reduce social welfare. To over-
come this we adopt ideas from economic theory as reward shaping
mechanisms enforced by a facade representing a sort of govern-
ment. Specifically, we will define two such mechanisms, which we
name “Capitalism” and “Socialism”, based on the economic theories
which inspired them, as well as an “Anarchy” baseline, in which no
“government” is present. The challenge is how to represent these
economic paradigms in an SSD environment to maximize the over-
all reward of the agents. We are interested in incorporating ideas of
taxation, wealth redistribution, elections, specialization, trust, and
minimum wage to MARL, but we will focus on a subset of these
issues in this work.

In particular, our model of governance must help with the fol-
lowing issues:

Dirt River Agent 1

Agent 2

Apple
(Reward)

Figure 1: Cleanup Environment [6]

e (Mitigate the Risk of Inflation) Do not introduce rewards
beyond what the environment offers, instead redistribute
the rewards that agents receive at every time step among all
agents, in a way that maximizes social welfare.

e (Eliminate Unemployment) Each agent needs to do mean-
ingful work to receive a reward. Free riding should not merit
earnings.

e (Proper Credit Assignment) Agents are rewarded propor-
tionally to the opportunities and wealth they create or amass.

One of the main benefits of our framework, is its client-server
architecture, where each agent is agnostic to the other agents (in
the sense of not needing to maintain a belief over other agents’
policies). The agents only communicate with a central government,
to which they provide their actions and environment-rewards at
each time-step. The government then gives agents the appropriate
rewards to update their policies as shown in Figure 2. This allows
easy utilization of the paradigms we are about to introduce in any
environment.

For the remainder of this section, we introduce our main con-
tribution developing the Capitalism paradigm, and a variant of it
with Specialization, on the CleanUp environment with vanilla A3C
as the underlying learning algorithm. Afterwards we introduce the
Socialism paradigm. Next, we show how vanilla A3C can be thought
of as an Anarchy setting. We finally discuss briefly how these ideas
can be extended to other environments.

5.1 Capitalism

Capitalism is a form of government centralized around corpo-
rate/private ownership as a means of creating wealth. Ownership
here means that agents control their labor and land, deriving their
income from this ownership. This gives them the ability to operate
efficiently to maximize profit. Free markets arises naturally, with
a notion of supply and demand. To make this concrete, consider
the CleanUp environment; if apples are abundant, agents cleaning
the environment should get paid less than the harvesters. On the
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Figure 2: At every timestep, the agent takes an action us-
ing its policy, which is dependent on its own state. It sends
the action to the government, which acts as an interface be-
tween the agent and the environment. The government col-
lects the actions of all agents, gets the rewards from the en-
vironment for all agents and makes the necessary redistri-
bution.

other hand, if everybody is harvesting, then apples will be in short
supply, and cleaners should be paid more since they are creating
more wealth. This led us to consider a notion of educating some
agents to specialize as Harvester (with a minor in cleaning), and
the rest as Cleaners (with a minor in harvesting) to maintain an
equilibrium of supply and demand, with all agents contributing
value.
We formulate our paradigm around key features including:

e Introducing the concept of Taxation of wealth-creating-agents
(aka. Harvesters.)

e Introducing the concept of Wage given to unrewarded labor-
ers (aka. Cleaners), as a pseudo-reward for their indirect
contribution in increasing aggregate reward.

e Introducing the concept of Specialization of agents.

We use wage (money) as an extrinsic motivation for cleaners
to perform the cleaning task. The harvesters are taxed a certain
portion of their rewards and this taxed reward is redistributed
among agents in proportion to the amount of cleaning work done
by them in a discounted window.

5.1.1 Training/Coordination formulation for Capitalism.

We define Cq ¢ as the number of dirt cells agent a cleaned in time
t,and Hg,t to be an indicator of whether agent a collected an apple
(+1) at time t or not (+0). Let w be the window in the past during
which a reward for cleaning is considered. Let y be a discounting
factor for the past work of each agent and « be the redistribution
ratio, where y, @ € [0,1]. Wy is the amount of cleaning (not
rewarded) work the agent performed in the past w time steps. We
denote by SW; the social welfare at time t. We define the reward
given to agent a at time t by rg ¢.

Then the following equations follow naturally:
Ca,t = #(CLEANED)
Hg; = 1(APPLE)

w
Wa,t = Z yrca,t—r
=0
SWi= Y Har
a€ Agents
W,
rat = aHgt + (1 — a)SW; * a.t

Yae Agents Wa,t

5.1.2  Pre-training for Specialized Agents.

We added a pre-training phase, in which we change the envi-
ronmental reward structure for agents to learn specialized poli-
cies. Agents pre-train together in the environment, and transfer
their policies during testing. For pre-training, we split agents into
our chosen specializations. Our reward structure gives a reward
r = B when the agent performs their specialization, and a reward
of r = € = 1 — B for their "minor", where € < .

Concretely, the harvester receives f rewards for collecting apples
and € for cleaning a block of dirt in the river, and vice versa for the
cleaners.

5.2 Socialism

Socialism is a form of government centralized around social owner-
ship as a means of creating wealth. It is characterised by social own-
ership of the means of production and workers’ self-management
of enterprise. To make this concrete, consider the CleanUp envi-
ronment, where the land is jointly owned by all agents and they
work collectively for the prosperity of the society. The reward col-
lected at each time step is shared equally among all the agents
that work towards joint prosperity. This approach may however
encourage the behavior of free-loading agents (i.e. agents might
learn to not perform any task and still be rewarded because other
agents are doing a good job and getting rewards that are shared
with everyone.)

5.3 Anarchy

Anarchy is the state of a society being free of any authority or
governing body. We consider the vanilla A3C model in the Cleanup
environment as Anarchy, because all agents are free to do anything
they wish and they get rewarded individually for their actions. It
can cause the to agents greedily chooses to maximize their own
gains without the concern for the society leading to sub-optimal
outcomes for the whole community.

6 EXPERIMENTS AND RESULTS

To compare the effectiveness of the different economic paradigms
mentioned in Section 5 for SSD problems, we use the Cleanup
environment ! depicted in Figure 1. We first define how different
parameters for the experiments were chosen, followed by the main
experiment, where we run the CleanUp game for the four different
paradigms for two hardness levels of the environment. We also
analyze the effects of pre-training agents to perform specific roles

The code of experiments is available at https://bitbucket.org/alyibrah/capitalism/
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and finally we discuss the social fairness of our approach. Socialism
and Anarchy paradigms represent our baselines.

6.1 Selection of Hyper-parameters

The experiments are very compute intensive, therefore it was not
feasible for us to run an extensive hyper-parameter search for the
entire space. We ran the experiments for different values of hyper-
parameters, changing one parameter at a time and keeping the rest
fixed. The details of the run and the default hyper-parameters used
can be seen in the Hyper Parameter Tuning Results appendix (A) at
the end of the paper (Figure 5 and Table 2). The hyper-parameters
we considered are :

® Window Size (w) : The window size is the number of steps in
the past we consider cleaning work to be worth getting paid
on. This is discounted to emphasize recent work. Wy ; =
Z:}:o y¥Ca,t—7, where Cq ; was the number of waste cells
cleaned by agent a in timestep t. We observe that the rewards
are the least for window size 1 as delayed rewards are not
accounted for. Very large values of window size also doesn’t
perform too well as it can make cleaning agents slack off
since at some point they get reward irrespective of the action
they pick in the recent time.

e Discount Factor (y) : Having a very high discount factor (we
treat all previous cleaning work equally valuable) has highest
variance (instability) and doesn’t take long to degrade the re-
ward. It could be because the cleaners learned the unwanted
lesson that if they clean for a number iterations (say x) they
will take the yield of this for the next (1000 — x) iterations.

® Dynamically Changing Apple and Dirt Spawn Rates : In this
experiment, we were trying to achieve specialization with-
out implementing pre-training in Capitalism. To do this we
decided to start the first iteration with a high apple spawn
rate and a low waste spawn rate (aka. a very wealthy en-
vironment), then we decrease the former and increase the
latter with each 30 iterations, till we reach the more stringent
environment. What we found was that as soon as the rates
reach the more stringent values, the learned policy does not
help, and the aggregate rewards decrease substantially.

® Ratio of Harvesters to Cleaners : We observe in general that
having more cleaners than harvesters yields higher rewards,
as the dirt spawns at a much higher rate than the apple
spawns. For the experiments we chose the ratio of cleaners
to harvesters to be 3:2 instead of 4:1 for all paradigm even
though it performs better, as we wanted at least two agents
of each type.

® Reward Redistribution Ratio (a) : This value is equivalent to
the opposite of taxation, i.e. the portion of reward obtained
by the harvester who collected the apple. Higher values of
o don’t work well as cleaners are not well compensated for
their hard work, whereas very low values also doesn’t incen-
tivize the harvesters to do the collection work. Therefore a
balanced value of o keeps both types of agents behave as
per expectation.

® Reward for Primary (B) and Secondary (e) Actions : Recall
that p is the artificial reward for the primary action of the
agent (e.g. cleaning for cleaners), and € is the artificial reward

for the secondary action for each agent (e.g. harvesting for
cleaners) during the pre-training phase. A higher beta value
should increase the amount of bias or specialization achieved
by agents. We are using conservation of rewards in this
experiment in the sense that € = 1 — . A higher value of
ensures that the agent performs the specialised task after the
pre-training phase is over. A lower value makes the agents
more flexible and they switch roles later on more frequently.

For the experiments for the Specialization paradigm, we observe
that our approach is not very sensitive to the hyper-parameters
selected.

6.2 Comparison of Different Paradigms

Using the hyper parameters in Table 2, next we perform 5 runs for
the experiments of the four paradigms. Each run consists of 50k
episodes and each episode was 1k iterations. The first 4k episodes
for the specialization roles is the pre-training stage, where the
agents are trained to specialize in their respective roles, therefore
we see a bump in the rewards as it contains ‘artificial rewards’ for
performing the cleaning task. It is important to note here that this
bump in rewards does not on its own give advantage to Specialization,
because the environment resets randomly with each episode. We also
compare the results for an easier environment by changing the
probability of the dirt and apple spawn rates. As seen in Figure
3, Capitalism with pre-training (Specialization) significantly out-
performs all other methods: Capitalism, Socialism, and Anarchy.
By performing pre-training, we bias the agents to specialize in a
certain task. The reward redistribution in Capitalism further en-
courages this splitting and specialization of tasks. In Capitalism,
rewards are redistributed in proportional to the amount of cleaning
(social work) done in the given window, which encourages agents
to continue their specialized behaviour and coordinate to achieve
better rewards in the environment. By comparison, in Anarchy
model, cleaning does not produce any rewards, therefore agents
might not be encouraged to perform cleaning and thus the rate of
spawn of apples decreases in the environment, which leads to poor
overall rewards. In Socialism, rewards are equally redistributed
among agents irrespective of the work done by agents, which can
encourage the behavior of free-loading agents—agents might learn
to not perform any task and still be rewarded (see Section 6.4).
Therefore, we can intuitively reason as well as empirically observe
how our approach performs better than Socialism and Anarchy on
the same environment initialization.

6.3 Analysis of Pre-training Agents

We wanted to analyze the retention of specialization roles for the
agents and contrast it with unspecialized agents in vanilla Capital-
ism, Socialism, and Anarchy. We compared the cleaning work and
apple collection work for each agent for the different paradigms. In
Figure 4, we plot for each paradigm the ratio of % for each
agent. If we look at graph (a), we observe in the first 4k iterations
that agents 1-3 are specializing in cleaning, while 4-5 are specializ-
ing in apple collection. Afterward, we see that agents 2 and 3 (both
cleaners) have a higher cleaning ratio than agents 4 and 5 (both
harvesters), while agent 1’s (cleaner) cleaning ratio is lower relative
to cleaner agents 2 and 3 because it is doing more harvesting work
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Figure 3: Average overall agents rewards for paradigms with different apple & dirt spawn rate across five independent runs

as compared to them (see Figure 6 in appendix (B)). It is as if agent
1 figured out that harvesting brings higher reward. While this is
very promising, we cannot claim that this is a significant enough
difference to indicate that specialization is retained. In the other
paradigms, Figure (4[b-d]), no indication of specialization is ob-
served. In Anarchy, agent 3 is not specializing, it is doing less work
than rest of the agents. In Figure 6(a) in appendix (B), we see that
the cleaner agents 2 and 1 are doing, on average, better cleaning
work than the harvester agent 4. However, agent 5 (harvester) is
doing far more cleaning work than agents 3 (cleaner). In (b), we
see a notable difference in apple collection work between the clean-
ers 2-3 and harvesters 4-5. We conclude that although all agents
are doing great collection work and cleaning work, specialization
makes agents better learners (just like education makes people
better equipped to create value), so agents sometimes do not stick
to their majors. We believe that changing the hyper-parameters (e.g.
taxation rate) could tilt the agents to stick to their specialization,
which would be interesting to investigate.

6.4 Analysis of the fairness of the Algorithms

We employ a fairness metric to measure equity under our capitalistic
constraints, and compare that to the other economic paradigms.
We define utility u;' = rti - (cti + h;') X r where rti is the total
reward of agent i at time ¢. Let c;' and h; be the amount of cleaning
and harvesting work done respectively by each agent at time ¢.
Smoothing on uf was done with a sliding window size of 2% the

Ziel : i
Yt cithy
reward per unit work (both cleaning and harvesting) among all
agents and all timesteps for this paradigm, and let u be the average
over u;' across all agents at each timestep. This assumes cleaning
and harvesting work are of equal value to the community. We
use the non-negative Coeflicient of Variation, C¢, (Equation (1))
introduced by previous work on Fairness in Multi Agent Games
[9]. This measures whether agents get equal reward for equal work
over each episode. A lower value here, corresponds to more equal
uti for all agents. A higher value means agents are either free-
riding, or not getting paid enough. In Table 1, we observe that
the median value under the socialism paradigm, due to collective
reward sharing irrespective of the work done (free-riding), the
coefficient is high with wider IQR. For the anarchy paradigm, agents

total number of timesteps. Denote by r = the average

are not compensated for cleaning work, hence they have the highest
co-efficient, indicating it is the least fair paradigm. Our proposed
capitalistic reward shaping and the specialization variant, despite
having no explicit equality in reward distribution, are more fair
than our baselines. Specialization is more fair than capitalism due
to a small amount of unfairness spikes in capitalism. These spikes
are due to timesteps where no apples were collected and so the
reward of cleaners was zero according to our formulation for rq ¢ in
section 5.1. In capitalism, agents were not specialized, hence, each
oscillated between harvesting and cleaning (see Figure 4 graph (b)),
which led to fewer cleaning work being done (2.5 agents on average
in capitalism as opposed to 3 agents in specialization), this caused
intermittent scarcity of apples. In socialism and anarchy the overall
rewards (welfare) is small (recall Figure 3), which is the unfortunate
case in poor countries where an agent’s (1) work is not adequately
compensated, or (2) their reward is unfairly distributed.

Ct=

1 (ui -7)
n_1Z taz (1)

n 2
i=1

Table 1: Fairness of the Algorithms Proposed

Paradigm Median Inter-Quartile Range (IQR)
Specialization  0.26960 0.07455
Capitalism 1.00289 1.00263
Socialism 1.16838 1.52340
Anarchy 17.86422 11.89171

7 DISCUSSIONS

Although Specialization outperformed other paradigms in this en-
vironment, we believe understanding why cleaning agent 1 did not
retain their education/specialization (Figures 4 and 6) and what
hyper-parameters should be tweaked to increase the specialization
is a promising direction. It is also natural to ask whether agents ac-
tually specializing would yield a better overall reward or not in this
case (or if adding specialization to our baselines might drastically
improve their reward, our preliminary experiments show that it
does improve rewards, but not enough to compete with Capitalism).
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Figure 4: Ratio of cleaning work done to total work done for each agent for different paradigms with apple & dirt spawn
rates=(0.05,0.5) across five independent runs. Agents [1-3] are cleaners and Agents [4-5] are harvesters

One possible explanation for the agent’s behaviour in the Special-
ization paradigm, is it forgot its exact specialization, but retained
that harvesting is somehow a better career.

We believe that our extrinsic motivation approach is a first step to
formulate a critical paradigm for reward redistribution. Moreover,
we maintain that this approach not only increases stability, but
also equity among agents as seen in Table 1. We believe that our
approach is robust to the underlying learning algorithm being used,
as we only make changes in how the reward is being distributed to
agents. We would need to validate our claims by running further
experiments for other learning algorithms such as distributed Q-
learning [18] or MADDPG [14]. Moreover, decreasing learning rate
or constraining the policy after pre-training stage might prove to
further improve the results of specialization.

This framework is general and should be applicable to any envi-
ronment satisfying the properties of SSD as described in Section
2.1. It would be interesting to apply this reward redistribution
framework on other SSD frameworks such as Harvest [6] (common
dilemmas game) and others in the future.

8 FUTURE WORK

As part of the future work, we would like to test our algorithm’s ro-
bustness to the changing dynamics of the environment (e.g. chang-
ing the location of the river, the apple spawn areas, the spawn
probabilities of apples / dirt over time), which could be seen as an
instance of transfer learning or continuous learning. Another set
of experiments could be to change the taxed rewards based on the
number of apples currently present, i.e. if the apples are abundant

in the environment, then the harvesters should be tax less and vice
versa. We would also like to ensure that our formulation maintains
its advantage when increasing the population (number of agents)
and indeed scales without any computational issues.

It would be interesting to try out variants of [8] where notion
of trust among agents is established, such that agents are able to
follow their influencers and even learn a mechanism of voting
to elect them (as in democratic settings). Allowing to change the
cognitive abilities of some agents (for instance, varying the agents’
computational power, their learning capacity, or their partially
observable state) would be very interesting to study. Following
a realistic model of the world, a future direction could be seeing
how our paradigms can be improved to be resilient to adversarial
agents and devise strategies for agents to detect and attenuate their
harmful effects.
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Figure 5: Figures [a-e] show the overall rewards of all agents upon varying different hyper-parameters for Specialization para-
digm. The experiments were run for 700 episodes with 1000 iterations per episode. The first 200 iterations are the specialization
stage, therefore we see a bump in the rewards. For all the above experiments, we have = 0.5, f = 0.9, € = 0.1, cleaners = 3,
harvesters = 2, apple & dirt spawn rate = (0.3,0.3), and windowsize = 1000 as the default values. When varying a specific
hyperparameter we keep the others constant at these values.

Table 2: The ideal hyper-parameters selected for capitalism and specialization paradigms after running 700 episodes.

Paradigm i} €  window-size discounting harvesters cleaners «
Specialization 0.9 0.1 10 0.5 2 3 0.5
Capitalism  N/A N/A 100 0.9 2 3 0.5
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Figure 6: Total dirt blocks cleaned and total apples collected by each agent per episode averaged across 5 runs for specialization
paradigm with the apple & dirt spawn rates of (0.05,0.5)
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