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ABSTRACT
While reinforcement learning (RL) agents have the remarkable abil-
ity to learn by interacting with their environments, this process is
often slow and data inefficient. Because environment interaction is
typically expensive, many approaches have been studied to speed
up RL. One popular method for doing so is to leverage human
knowledge via imitation learning (IL), in which a demonstrator
provides an example of the desired behavior, and the agent seeks to
imitate. In this in-progress work, we propose a new way of integrat-
ing IL and deep RL, which we call corrected self imitation learning,
where an agent provided with demonstration can learn faster com-
pared to an agent with no demonstration. Our method does not
increase the number of environmental interactions compared to
a baseline RL method, and works well even in the case when the
demonstrator is not an expert. We evaluate our method in the Atari
game of Ms. Pac-Man and achieve promising results indicating our
method has the potential to speed up deep RL algorithms.
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1 INTRODUCTION
Deep Reinforcement Learning (deep RL) has become an increasingly
popular general machine learning technique due to its ability to
achieve record-setting performance in multiple domains [10, 12,
14, 15, 22, 23]. However, one of the main drawbacks of deep RL
is its sample complexity as it learns through trial-and-error, i.e.,
it commonly requires millions of steps taken in the environment
before the agent can begin to act reasonably. While acceptable in a
simulator, this exploration becomes unaffordable in a real-world
environment (e.g., robotics [13]) since taking so many steps is often
expensive in terms of risk, energy, or time.

Because of this issue, many approaches have been proposed to
improve the data efficiency of deep RL algorithms. One class of
such methods involves leveraging available human knowledge to
bootstrap learning [2]; behavior cloning (BC) is a simple and effi-
cient example of such techniques [3, 18–21]. Generally, BC assumes
there exists an expert (usually a human) who can demonstrate the
desired behavior, which is recorded and stored in the form of state-
action pairs. An agent then attempts to learn the expert’s policy
using supervised learning over those pairs—a process that requires
∗Corresponding author

computation but no additional environment interaction. While BC
models are fast to train and avoid costly environment interaction,
they are known to perform poorly on out-of-sample data [19]. In
contrast, even given their poor sample complexity, RL algorithms
can overcome this drawback by interacting with the environment.

In this paper, we propose a new method for integrating BC and
RL that introduces one way to get the best of both: an RL algorithm
is used to learn the task, but a BC model is incorporated during
training to speed up learning by providing valuable experiential
data where it can. Different from some existing BC approaches
where a static set of demonstrations is used (e.g., [7, 9, 17]), our
method allows the BC model to generate new trajectories from
states that have been visited by—but resulted in poor performance
from—the current RL policy. If a trajectory generated by the BC
model turns out better than what the RL agent originally experi-
enced, this additional data is stored for the RL agent to leverage later.
Our procedure lets the agent essentially perform counterfactual
reasoning: how would things have gone if I had followed the BC policy
instead of my policy? Further, while in this paper we emphasis the
use of a BC model to generate the additional trajectories because it
is easy to obtain, this policy could actually come from any source,
including a hand-coded agent, a rule-based agent, or another agent
trained using RL (as we will show later).

One limitation of the proposed technique is that it requires the
ability for the agent to be able to teleport back to previously-visited
states and roll forward in time from there. Thus, our method is only
suitable for tasks where a simulator is available—either the task
itself is a simulation like a video game or we can build a simulator
of the real world—and that reset to arbitrary states in the simulator
is achievable. Despite this constraint, we carefully account for all
environment interactions—including steps taken by the BC policy
to generate trajectories—and show that our method reduces the
overall sample complexity of learning compared to methods that
do not leverage a BC policy in this way.

We show experimentally in the game of Ms. Pac-Man that our
method outperforms the baselinemethod inwhich a BCmodel is not
used, even when the BC model is far from expert. We also conduct
additional ablation studies to understand how each component
functions in our method. While this work is still in-progress, our
method has significant potential given the exciting preliminary
results—it suggests a new way of incorporating human knowledge
into RL algorithms.



2 BACKGROUND
Our algorithm builds upon several existing methods, which we
briefly review in this section.

2.1 Asynchronous Advantage Actor-Critic
We consider a reinforcement learning (RL) problem that is modeled
using a Markov Decision Process (MDP), represented by a 5-tuple
⟨𝑆,𝐴, 𝑃, 𝑅,𝛾⟩. A state 𝑠𝑡 represents the environment at time 𝑡 . An
agent learns what action 𝑎𝑡 ∈ A(𝑠) to take in 𝑠𝑡 by interacting
with the environment. A reward 𝑟𝑡+1 ∈ R ⊂ R is given based on
the action executed and the next state reached, 𝑠𝑡+1. The goal is
to maximize the expected cumulative return 𝐺𝑡 =

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘+1,
where 𝛾 ∈ [0, 1] is a discount factor that determines the relative
importance of future and immediate rewards [24].

Policy-based methods such as the asynchronous advantage actor-
critic (A3C) algorithm [14] combine a deep neural network with the
actor-critic framework. In this work, we leverage the A3C frame-
work to learn both a policy function 𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ) (parameterized as
𝜃 ) and a value function 𝑉 (𝑠𝑡 ;𝜃𝑣) (parameterized as 𝜃𝑣 ). The policy
function is the actor that takes action while the value function is the
critic that evaluates the quality of the action against some baseline
(e.g., state value). A3C directly minimizes the policy loss

𝐿𝑎3𝑐
𝑝𝑜𝑙𝑖𝑐𝑦

=∇𝜃 𝑙𝑜𝑔(𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ))
(
𝑄 (𝑛) (𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) −𝑉 (𝑠𝑡 ;𝜃𝑣)

)
− 𝛽𝑎3𝑐H∇𝜃

(
𝜋 (𝑠𝑡 ;𝜃 )

)
where 𝑄 (𝑛) (𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) =

∑𝑛−1
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛 ;𝜃𝑣) is the 𝑛-
step bootstrapped value that is bounded by a hyperparameter 𝑡𝑚𝑎𝑥

(𝑛 ≤ 𝑡𝑚𝑎𝑥 ).H is an entropy regularizer for policy 𝜋 (weighted by
𝛽𝑎3𝑐 ) which helps to prevent premature convergence to sub-optimal
policies. The value loss is

𝐿𝑎3𝑐
𝑣𝑎𝑙𝑢𝑒

= ∇𝜃𝑣
( (
𝑄 (𝑛) (𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) −𝑉 (𝑠𝑡 ;𝜃𝑣)

)2)
The A3C loss given by Mnih et al. [14] is then

𝐿𝑎3𝑐 = 𝐿𝑎3𝑐
𝑝𝑜𝑙𝑖𝑐𝑦

+ 𝛼𝐿𝑎3𝑐
𝑣𝑎𝑙𝑢𝑒

(1)

where 𝛼 is a weight for the value loss. A3C runs 𝑘 actor-critic
workers in parallel and each with their own copies of the environ-
ment and parameters. In this work, we use the feedforward version
of A3C for all experiments since it runs faster than the recurrent
version while the performance is still comparable Mnih et al. [14].
The architecture consists of three convolutional layers, one fully
connected layer, followed by two branches of a fully connected
layer: a policy function output layer and a value function output
layer. Details on the network architecture can be found in [14].

2.2 Transformed Bellman Operator for A3C
The A3C algorithm uses reward clipping to help stabilize learning.
However, Hester et al. [9] found that clipping rewards to [+1,−1]
results in the agent being unable to distinguish between small
and large rewards, thus hurting the performance in the long-term.
Pohlen et al. [17] proposed the transformed Bellman (TB) operator to
overcome this problem in the deepQ-network (DQN) algorithm [15].
The authors consider reducing the scale of the action-value func-
tion while keeping the relative differences between rewards which
enables DQN to use raw rewards instead of clipping. Pohlen et al.

[17] apply a transform function ℎ : 𝑧 ↦→ 𝑠𝑖𝑔𝑛(𝑧)
(√
|𝑧 | + 1 − 1

)
+ 𝜀𝑧

to reduce the scale of 𝑄 (𝑛) (𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) as

𝑄
(𝑛)
𝑇𝐵
(𝑠𝑡 , 𝑎𝑡 ;𝜃, 𝜃𝑣) =

𝑛−1∑
𝑘=0

ℎ

(
𝛾𝑘𝑟𝑡+𝑘 + 𝛾𝑛ℎ−1 (𝑉 (𝑠𝑡+𝑛 ;𝜃𝑣))

)
(2)

Pohlen et al. [17] prove that the TB operator reduces the variance of
the optimization goal while still enabling learning an optimal policy.
Given this benefit, de la Cruz Jr et al. [8] applied the TB operator to
A3C, denoted as A3CTB, and found that A3CTB outperforms A3C.

2.3 Self Imitation Learning for A3CTB
Oh et al. [16] propose the self imitation learning (SIL) algorithmwith
the intuition that the agent can exploit its own past good experiences
to drive deeper exploration and improve performance. Built upon
the actor-critic framework [14], SIL adds a prioritized experience
replay buffer D = (𝑆,𝐴,𝐺) to store the agent’s past experiences.
In addition to the A3C update in equation (1), at each step 𝑡 , SIL
samples a minibatch from D for 𝑀 time steps and optimizes the
following actor-critic loss:

𝐿𝑠𝑖𝑙
𝑝𝑜𝑙𝑖𝑐𝑦

= −𝑙𝑜𝑔(𝜋 (𝑎𝑡 |𝑠𝑡 ;𝜃 ))
(
𝐺𝑡 −𝑉 (𝑠𝑡 ;𝜃𝑣)

)
+

𝐿𝑠𝑖𝑙
𝑣𝑎𝑙𝑢𝑒

=
1
2
| |
(
𝐺𝑡 −𝑉 (𝑠𝑡 ;𝜃𝑣)

)
+ | |

2

where𝐺𝑡 =
∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘+1 is the discounted cumulative return,𝑉 is
the state value, and (·)+ =𝑚𝑎𝑥 (·, 0) meaning that only experiences
with positive advantage can contribute to the policy update. The
experience buffer is prioritized by

(
𝐺𝑡 −𝑉 (𝑠𝑡 ;𝜃𝑣)

)
+ to increase the

chance that a good experience is sampled. The SIL loss is then

𝐿𝑠𝑖𝑙 = 𝐿𝑠𝑖𝑙
𝑝𝑜𝑙𝑖𝑐𝑦

+ 𝛽𝑠𝑖𝑙𝐿𝑠𝑖𝑙
𝑣𝑎𝑙𝑢𝑒

(3)

where 𝛽𝑠𝑖𝑙 weigh the value loss. de la Cruz Jr et al. [8] leverage
this framework to incorporate SIL in A3CTB, denoted as A3CTBSIL,
which outperforms both the A3C and A3CTB algorithms. Therefore,
in this work we use A3CTBSIL as the baseline.

2.4 Behavior Cloning for A3C
Behavior cloning (BC) is an imitation learning method that reduces
an RL task into a supervised learning task [19, 20]. In a standard BC
algorithm, a set of demonstration data is first collected; a classifier
can then be trained to learn a mapping between the state and the
action. Pre-training a BC model for A3C, however, requires a few
more steps than just using supervised learning. A3C has two output
layers and the policy output is what we usually train a supervised
classifier for. But the value output layer is usually initialized ran-
domly without being pre-trained. de la Cruz Jr et al. [8] observe
this inconsistency and propose to leverage demonstration data to
also pre-train the value output layer. In particular, since the demon-
stration data contains the true return 𝐺 , we can obtain a value loss
that is almost identical to A3C’s value loss 𝐿𝑎3𝑐

𝑣𝑎𝑙𝑢𝑒
: instead of using

the n-step bootstrap value𝑄 (𝑛) to compute the advantage, the true
return 𝐺 is used.

Inspired by the supervised autoencoder (SAE) framework [11],
de la Cruz Jr et al. [8] also blend in an unsupervised loss for pre-
training. In SAE, an image reconstruction loss is incorporated with
the supervised loss to help extract better feature representations and
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achieve better performance. de la Cruz Jr et al. [8] show that a BC
model pre-trained jointly with supervised, value, and unsupervised
losses can lead to better performance after fine-tuning with RL
compared to pre-training with supervised loss only. In this work,
we leverage this method to jointly pre-train a BCmodel and propose
a new way of combining BC with A3CTBSIL.

3 CORRECTED SELF IMITATION LEARNING
As reviewed in Section 2.3, the key component of the SIL framework
is to use a replay buffer to store past trajectories; the agent can
then repeatedly learn from its good states (i.e., states with positive
advantage value). The motivation for our method is the observation
that the bad states (i.e., states with negative advantage value) can
potentially also be informative. Ignoring these states results in SIL
not taking full advantage of exploiting its past experiences.

Given this motivation, we propose in this paper corrected self
imitation learning (CSIL), an algorithm that allows an SIL agent
to leverage other policies to “correct” the bad experiences by find-
ing possible better trajectories so that information in these states
can also be exploited. We leverage human demonstration data to
generate such a supplemental policy. In particular, we collect a
small set of demonstrations from a human and train a behavior
cloning (BC) model using the data. This BC model is then used as a
“corrector” for an RL agent while it learns. Note that the corrector
could actually come from any source—here we chose to leverage
demonstration data because it is easy to obtain, and also to illustrate
that our method works well even when the source is a non-expert.
In Section 4 we include an experiment that considers an agent
trained using RL as the source to show the scenario when the cor-
rector is an expert, which provides an empirical upper-bound on
the performance of CSIL.

From a high level perspective, we expect the corrector to help
learning by allowing the agent to witness and learn from alter-
nate and advantageous behaviors. Our method builds upon the
A3C with Transformed Bellman operator and Self Imitation Learning
(A3CTBSIL) algorithm by de la Cruz Jr et al. [8]. We chose this algo-
rithm as our baseline because it provides improved performance
over the original A3C and SIL algorithms [14, 16], especially in our
evaluation domain, the Atari game of Ms. Pac-Man.1

Figure 1 shows the proposed architecture for CSIL. Blue com-
ponents represent the A3C algorithm in which 𝑘 parallel workers
interact with their own copies of the environment to update the
global policy 𝜋 . Orange components represent the SIL algorithm in
which a SIL worker and a prioritized replay buffer D is added to
A3C. Buffer D stores all experiences from the A3C workers. The
SIL worker runs in parallel with the A3C workers but does not
interact with the environment; it only takes samples from bufferD
and updates 𝜋 using samples that have positive advantage values.

We make the following additions to A3C and SIL. First, instead
of ignoring the bad states that were not used for an SIL update,
we store them in a priority queue. This queue is prioritized by
advantage, but in a reverse order to that of buffer D. In contrast
to buffer D where the most positive states are sampled first, the

1Note that A3CTBSIL is the baseline method in de la Cruz Jr et al. [8], which does
not leverage demonstrations; this is our baseline here. They also explored combining
demonstration pre-training with A3CTBSIL, which we leave for future work.

Figure 1: CSIL architecture. The original A3C algorithm is
shown in blue: 𝑘 parallel workers interact with their own
copies of the environment and update the global policy 𝜋 .
The SIL algorithm is shown in orange: one SIL worker runs
in parallel with A3C and samples from experience bufferD
and update 𝜋 using only good states.We propose to add a cor-
rector worker, shown in green, to generate new experiences
from a given bad state. The corrector is a behavior cloning
model pre-trained using demonstration data as described in
Section 2.4. The replay buffer R stores corrector-generated
experiences only if they are better than before.

queue populates the most negative states first. That is, we want
to correct states where the current policy performed the worst.
Second, we add a corrector worker in parallel with the A3C and
SIL workers. Our corrector is a pre-trained BC model that can be
queried for actions when provided with states (i.e., a policy). The
corrector worker also has access to the environment and takes as
input the states from the queue. For each state in the queue, the
corrector resets the environment to that state and thereafter uses
its policy to perform a rollout until the end of the episode. Third,
we use a prioritized buffer R to store the trajectories generated
by the corrector only if the return of the new trajectory 𝐺new is
better than the previous return 𝐺 (sampled from buffer D) for a
state. R is prioritized the same way as inD, i.e., positive advantage
first. Finally, the SIL worker samples equally from both buffers D
and R instead of only fromD, and performs its updates using good
experiences only (i.e., experiences with positive advantage values).
We summarize the correction procedure of CSIL in Algorithm 1.2

CSIL leverages both human demonstration and RL, and it enjoys
two main benefits. First, as our experimental results show, CSIL
works well with a policy that is not an expert at the task. Second
(and more importantly), even though the corrector requires addi-
tional interaction with the environment, we show that the speedup
in learning it provides actually reduces the overall number of envi-
ronment interactions required for learning. It seems that the high

2We omit presenting the A3C and SIL worker procedures due to space limit; the
procedures are the same to those in Mnih et al. [14] and Oh et al. [16] respectively.
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Algorithm 1 Corrected Self Imitation Learning: Corrector Worker

1: //Assume a behavior cloning model 𝑓 (·;𝜃𝐵𝐶 ) is available and
can interact with the environment

2: //Shared replay buffer R
3: //Initialize 𝐴new ← ∅, 𝑅 ← ∅, 𝑆 ← ∅
4: //Given a sample {𝑠, 𝑎,𝐺} from the bad state queue, reset the

environment to 𝑠
5: while not terminal do
6: Query BC for an action: 𝑎 ← 𝑓 (𝑠;𝜃𝐵𝐶 )
7: Execute 𝑎, obtain reward 𝑟 and next state 𝑠 ′
8: //Store the experience
9: 𝐴𝑛𝑒𝑤 ← 𝐴𝑛𝑒𝑤 ∪ 𝑎, 𝑅 ← 𝑅 ∪ 𝑟, 𝑆 ← 𝑆 ∪ 𝑠 ′
10: Go to next state 𝑠 ← 𝑠 ′

11: end while
12: //Compute new return
13: 𝐺new =

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘+1, ∀𝑟 ∈ 𝑅
14: if 𝐺new > 𝐺 then
15: Add to buffer R ← R ∪ {𝑆,𝐴𝑛𝑒𝑤 ,𝐺new}
16: end if

quality of the corrector’s additional experience compensates for
the additional quantity of policy updates it requires. Our method
increases the quality of corrector-generated experience because we
only use it when𝐺new > 𝐺 . We empirically justify the importance
of this hand-coded rule via an ablation study in Section 5. Our
method reduces the quantity of policy updates (i.e., number of gra-
dient updates) because it replaces one of the A3C workers with the
corrector. Since policy updates are only performed by A3C workers,
our method performs strictly fewer policy updates than would be
performed by A3CTBSIL over a similar time period3 (see Section 4
for detailed parameter choices). Therefore, our method trades off
quantity for quality, achieving better results without increasing the
number of environmental steps while still reducing the number of
policy updates.

4 EXPERIMENTS
We empirically evaluate CSIL in the Atari game of Ms. Pac-Man [4]
by comparing the following techniques:

(1) A3CTBSIL: the baseline method from de la Cruz Jr et al. [8].
Thismethod does not leverage any demonstrations; the agent
is trained from scratch and its architecture consists only of
the blue and the orange components in Figure 1.

(2) CSIL-BC: CSIL in which a behavior cloning (BC) model is
used as the corrector worker. The BC model only imitates
the demonstration data and its performance in Ms. Pac-Man
is non-expert.

(3) CSIL-TA: CSIL in which a trained agent (TA) is used as the
corrector worker. The trained agent performswell inMs. Pac-
Man and we consider it as an expert agent.

Note that our method does not require the corrector to be an expert
to improve performance—we include here the CSIL-TA setting to
provide an empirical upper-bound on performance of our method
when an expert policy is available. We describe how we obtained
the BC model and the trained agent later in this section. For all
3This difference can be considerable giving that training takes millions of steps.

Table 1: Demonstration size and quality, collected from de la
Cruz et al. [7].

Game Worst score Best score # of states # of episodes
Ms. Pac-Man 4020 18241 14504 8

experiments, we use the same network architecture as in the feed-
forward version of A3C [14] (as reviewed in Section 2.1). Game
images are gray-scaled and resized to 88×88 with 4 images stacked
as the input. We train for 50 million environmental steps and for
every 1 million steps we perform a test of 125,000 steps and report
the testing scores.

The baseline A3CTBSIL is trained with 17 parallel workers; 16
A3C workers and 1 SIL worker. The RMSProp optimizer is used
with learning rate = 0.0007. We use 𝑡𝑚𝑎𝑥 = 20 for 𝑛-step bootstrap
(𝑛 ≤ 𝑡𝑚𝑎𝑥 ). The SIL worker performs𝑀 = 4 SIL policy updates per
step 𝑡 with minibatch size 32 (i.e., 32×4=128 total samples per step).
The size of the buffer D is 105, and 𝛽𝑠𝑖𝑙 = 0.5.

For CSIL-BC, the BC model is obtained by pre-training with
demonstration data collected by de la Cruz et al. [7].4 The data
statistics are shown in Table 1. As described in Section 2.4, we fol-
low de la Cruz Jr et al. [8] and jointly pre-train with supervised,
value, and unsupervised autoencoder losses for 50,000 steps and
minibatch size 32. Adam optimizer is used with learning rate =
0.0005. For CSIL-TA, the trained agent is obtained by first transfer-
ring the weights of the pre-trained BC model to the agent (instead
of initializing it randomly), and then continuing to train it using the
A3CTBSIL algorithm (with the same parameters as in the baseline).
Both CSIL settings are trained with 17 parallel workers: 15 A3C
workers, 1 SIL worker, and 1 corrector worker—we keep the total
number of workers in A3CTBSIL and CSIL the same to ensure a
fair performance comparison. The SIL worker in CSIL also uses
minibatch size of 32 as in A3CTBSIL, where 16 samples are taken
from buffer D and 16 are from R.

Figure 2 shows the results of CSIL compared with A3CTBSIL
(averaged over 3 trials). As expected, CSIL-TA’s performance is
significantly higher than A3CTBSIL’s when using a more expert
agent as the corrector. We however note that CSIL-TA does not
outperform the trained agent (whose performance is shown as the
purple dashed line5). Our method underperforms the trained agent
could be because CSIL does not follow the corrector everywhere,
which would be the right thing to do if the corrector were optimal.
Instead, CSIL allows the learning agent to explore on its own, which
is necessary when the corrector is sub-optimal.

Themore interesting result is the performance of CSIL-BC, which
demonstrates that our method works well even when using a cor-
rector that is far from expert. In particular, the black dashed line
shows the average performance level of the non-expert BC model,
which is roughly 2,000 points (estimated by executing the BC model
in Ms. Pac-Man for 125,000 steps). By incorporating the corrector,
the CSIL agent can learn to outperform BC quickly and achieve bet-
ter results compared to the baseline. In addition, it is worth noting

4The dataset is publicly available at github.com/gabrieledcjr/atari_human_demo
5Note here the expert score shown is the best testing score of the agent. That is, take
the best checkpoint of the trained agent, execute it in the environment for 125,000
steps, and record the highest score it achieved.
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Figure 2: Ms. Pac-Man performance. The x-axis is the total
number of environmental steps. For A3CTBSIL, steps are
counted in 16 A3C workers. For CSIL, steps are counted in
15 A3C workers plus 1 corrector worker. The y-axis is the
average testing score over three trials; shaded regions are
the standard deviation. The dashed black line shows the av-
erage score of the BC corrector, estimated by executing the
BC model in the game for 125,000 steps. The dashed purple
line shows the best testing score the trained agent achieved.

that our method achieved better results with fewer policy updates
(i.e., CSIL uses one fewer A3C worker). This observation shows that
data generated by the corrector can be efficiently leveraged by the
policy and thus compensate for the reduced quantity of updates. We
highlight this observation in particular since it shows significant
potential for learning from imperfect demonstrations.

5 ABLATION STUDY
We have shown that our method can effectively leverage knowledge
from different sources (a BC model and a trained agent) and achieve
better results in the Atari game of Ms. Pac-Man compared to the
baseline. In this section, we perform two ablation studies to further
validate our design choices.

First, the primary motivation of our method is that we hypoth-
esize that the original SIL algorithm does not take full advantage
of past experiences and that bad experiences should also be used
after correction. Therefore, we empirically justify the need for cor-
rection by conducting an experiment in the original SIL frame-
work in which all samples (even bad ones) are used for policy
updates instead of only the good ones.6 We denote this experiment
as A3CTBSIL-AllSample.

Second, we show that it is important to store the corrector-
generated experiences only if those experiences are better, i.e., if
the return𝐺new computed from the corrector experience is higher
than the return 𝐺 that the agent previously obtained (shown as

6This setting was not explored in the original SIL paper. Oh et al. [16] showed the
agent should imitate past good experiences but did not study the effect of imitating
bad experiences.

Figure 3: Ablation study. The x-axis is the total number of en-
vironmental steps. For A3CTBSIL-based method, steps are
counted for 16 A3C workers. For CSIL, steps are counted for
15 A3Cworkers plus 1 corrector worker. The y-axis is the av-
erage testing score over three trials; shaded regions are the
standard deviation.

the green arrow in Figure 1). Behavior cloning suffers from distri-
bution shift and performs poorly on out-of-sample data [19]. This
phenomenon is particularly true in our CSIL-BC setting where the
BC model is trained with a small set of demonstration data—states
encountered by the demonstrator are far from covering all possible
states in Ms. Pac-Man. However in practice, it is possible that the
BC model is knowledgeable in some states where the agent has not
yet learned. Intuitively, our method seeks this type of situation and
instead of letting the agent imitate the demonstrator all the time, the
demonstrator should only provide help where it can. To validate this
hypothesis, we conduct an experiment in which the corrector adds
all trajectories to buffer R to simulate the situation when the imper-
fect BC model is trying to help everywhere—this leads to decreased
performance. We denote this experiment as CSIL-BC-AddAll.

The results shown in Figure 3 verify that both of our hypotheses
are true, i.e., our design choices are well-founded. In A3CTBSIL-
AllSample, the agent barely learns anything despite that there is
only one SIL worker updating the global policy among 16 A3C
workers. Directly leveraging bad experiences without correction
badly hurts performance, which verifies the assumption of the orig-
inal SIL framework that only good experiences should be imitated
[16]. The CSIL-BC-AddAll result shows a slight improvement over
the baseline A3CTBSIL during early stages of training but then
plateaus lower than CSIL-BC, indicating that the non-expert BC
model is still helpful but only in a limited state space. Therefore, it
is important to identify where it can help by filtering out samples
that are out-of-distribution, only exploiting places where the BC
model can do better than what the agent had experienced.

6 RELATEDWORK
Our work is related to imitation learning (IL) via behavior cloning
(BC) [3, 18–20]. One of the most popular BC algorithms, DAgger,
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assumes access to an expert demonstrator throughout training. The
imitator queries the expert for new data at every iteration and
retrains a BC model using aggregated data [20]. Our method is
similar to DAgger in that we also consider using a behavior cloning
model for generating new data (which we call the corrector), but
is different in two respects. First, we don’t require the corrector to
be an expert (as shown in Figure 2). And second, DAgger-like IL
frameworks can’t learn to outperform the demonstrator, while in
our method, the corrector is combined with RL to allow the agent
to also learn from environment interactions, thus enabling it to
surpass the (non-expert) demonstrator’s performance.

More recent research combines imitation learning in RL to assist
exploration in complex environments. The most straightforward
approach is to pre-train an initial policy using demonstration data
and then fine-tune with RL algorithms [2, 7, 8, 21, 22]. One can also
add an imitation loss (usually a classification loss) to the RL loss and
minimize both during training. The deep Q-learning from demon-
strations (DQfD) algorithm falls into this category [9]. In DQfD, a
prioritized replay buffer is initialized with expert demonstration
data and new trajectories generated by the agent during training
is added to the buffer without overwriting the demonstration data.
The agent jointly minimizes an RL temporal difference loss with
a large margin supervised loss using a batch of samples from the
buffer. Similarly in our method, we use a separate buffer to store
experiences generated by a demonstration model. The difference
is that we train on a single RL loss instead of a joint loss. We also
sample from the demonstrator’s buffer explicitly and leverage its
knowledge where helpful, while DQfD mixes all experiences to-
gether and samples based on TD error priority. We point out that,
although we have not yet performed a complete set of comparisons
to DQfD, the final score of our method at around 6,000 is already
higher than the score reported for DQfD for Ms. Pac-Man, which
is 4,695.7. Ape-X DQfD [17] improves upon DQfD in which the
transformed Bellman (TB) operator was proposed. The baseline
A3CTBSIL we used in this work also leverages the TB operator.

Another paradigm for leveraging human knowledge for RL is
through advice [5]. The assumption is that an RL agent has access
to an existing “advisor” policy; this policy can either come from a
human or another agent trained from a different source. During
training, the learner can query the advisor for explicit action advice,
which helps improve the sample efficiency of the learner [1, 25, 26].
One question in this type of approach is that the advised action
might not always be helpful. The confidence-based human agent
transfer (CHAT) algorithm [27] copes with this problem. Instead
of following the advise all the time, CHAT executes the suggested
action only when the suggestion’s confidence is higher than a
threshold. The mechanism of our corrector worker is similar in that
we store its trajectory only when it obtains a higher return than
before. Another problem when leveraging advice is that advisor
might not always be available, or the communication could be costly,
requiring the agent to minimize the amount of advice requested.
Da Silva et al. [6] proposed uncertainty-aware advice that is suitable
when the advice budget is limited. Instead of querying at every step,
the learner asks for advice only when it is uncertain about what
to do; the uncertainty is measured by the variance of the learner’s
Q-values. Our method is different in that we don’t limit the number

of times the corrector can perform a rollout—it produces as many
more new samples as it can within training time.

7 DISCUSSION AND FUTUREWORK
We proposed corrected self imitation learning (CSIL) in this paper.
First, we identified one disadvantage in the SIL framework in that
it does not take full advantage of exploiting its past experiences;
only good states are used while bad states are ignored. We then
added a pre-trained behavior cloning model, which we called a
corrector worker, to the SIL framework to explore possible better
trajectories for each bad state. Information in previously bad states
can then be fully leveraged after the correction. Meanwhile, one
limitation of our method is that it is only suitable in situations in
which teleporting the agent to any previously seen state is possible,
and in which the agent can take steps forward from there.

While we have shown preliminary success, more study needs
to be done to further improve our method. First, we have only
evaluated our method in the game of Ms. Pac-Man with three seeds.
An immediate next step is to perform experiments in more games
to test the robustness of our method. We will also try to understand
the underlying behaviour of the corrector. For example, we chose
to store only experiences generated by the corrector that are better
than the initial trajectories, given the intuition that a behavior
cloning model can only perform well for in-sample states. As the
agent learns a better policy over-time and explores a larger state
space, the possibility of the BC model seeing an out-of-sample
state increases. Continuing to perform the rollout would reduce the
efficiency of the corrector since it becomes less likely to generate
better samples. An interesting direction is to quantitatively measure
how helpful the corrector is during the course of training, stopping
the corrector when it is no longer helpful, and allowing the agent to
learn on is own; this is similar to the DAgger algorithm where the
agent samples less from the expert policy over time. We argue that
the sampling schedule should not be purely based on time steps,
but should also consider the helpfulness of the demonstrator model.

We have not yet compared our method with other RL algorithms
that leverage demonstrations. CSIL should be compared with exist-
ing methods to understand when it works better/worse than the
other methods. For example, an alternative and straightforward
appraoch is to directly transfer the weights of the pre-trained BC
model to an agent and thereafter fine-tune using RL [7, 8], as we
have done to obtain the trained agent in the CSIL-TA setting. While
CSIL-TA did not reach the same level of performance as the trained
agent (as discussed briefly in Section 4), it will be interesting to
explore if combining our method with weight transfer could further
improve performance. That is, we are curious whether keeping the
BC model in a separate worker even after the weight transfer can
still help the agent.

Lastly, we plan to extend our method into incorporating multiple
policies. Currently, our architecture adds one corrector worker
along with other workers, and the corrector can leverage an existing
policy (that comes from a BCmodel or a trained agent). It is therefor
natural to consider adding multiple corrector workers, each with
its own policy that contains knowledge on different state spaces.
The agent can then compare and sample from the best policy.
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