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ABSTRACT
Multi-agent policy gradient algorithms inspired by regret minimiza-

tion have recently found success in a variety of deep reinforcement

learning settings. Stabilizing agents’ policies during learning re-

mains challenging and important, but is typically based on the use

of entropy regularization.Motivated by optimistic gradientmethods

with last iterate convergence guarantees, we present our work-in-

progress introducing a small modification to existing multi-agent

policy gradient algorithms to include (increased) optimism. The

particular instantiation we study, an application to Neural Replica-

tor Dynamics, corresponds to Optimistic Hedge in the single-state

tabular case and achieves empirical last iterate convergence in the

benchmark games of Rock, Paper, Scissors and Kuhn Poker. We

also demonstrate that the amount of optimism is robust; increased

optimism can increase the rate of convergence.

KEYWORDS
No-regret learning; reinforcement learning; CFR; optimism; multi-

agent; policy gradients

1 INTRODUCTION
Designing multi-agent reinforcement learning (MARL) algorithms

that converge to equilibria remains a challenging problem. Coun-

terfactual Regret Minimization [24], has empirical successes [3, 15]

and strong theoretical convergence guarantees, but only in terms

of the time-averaged policy. Recent work has focused on extending

CFR to function approximation and policy gradients ([18], [16],

[2]). These methods still suffer however from the typical result of

no-regret dynamics: it is the time-averaged policy with guarantees

of convergence. The current policy lacks any guarantees of con-

verging to anything meaningful, such as a Nash equilibrium. This

problem is compounded as the policies are represented by a neu-

ral network, where averaging becomes even more problematic. In

practice, heuristic approaches such as clipping regrets (CFR+ [21])

or entropy regularization
1
[16, 18] are used to achieve last iterate

convergence.

In this paper, representing our work-in-progress, we propose

a modification to existing multi-agent policy gradient algorithms

that instead achieves last iterate convergence of the policy using op-

timism. The basic version of optimism involves adding the current

gradient twice while subtracting the previous gradient. Of practical

importance, our method only requires a small change to store the

previous iteration’s gradients. Furthermore, our method’s tunable
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gives a principled interpretation of entropy regularization as transforming the game

to one with slightly different rewards (and thus equilibria) but better convergence

properties [17]. However, the final convergence of the policy to the actual equilibrium

still relies on heuristically decaying the weight on the regularization term to effectively

solve a sequence of games that are closer and closer approximations of the true game.

hyperparameters allow for increased amounts of optimism that can

potentially improve performance in some settings.

More specifically, we demonstrate our approach on the state-

of-the-art policy gradient method Neural Replicator Dynamics

(NeuRD) [16]. We extend it to allow (increased) optimism and re-

fer to the resulting algorithm as Generalized Optimistic Neural

Replicator Dynamics (GO-NeuRD). We show that GO-NeuRD is

theoretically grounded as it reduces to Optimistic Hedge using

standard optimistic counts of two in the single-state tabular setting,

in the same way that NeuRD reduces to Hedge. Since Optimistic

Hedge provably achieves last iterate convergence [5] in this setting,

it immediately follows this holds for GO-NeuRD as well (at least

with exact updates).

On the empirical side, we demonstrate how using increased levels

of optimism accelerates last iterate convergence in the benchmark

games of Kuhn poker and Rock, Paper, Scissors. To our knowledge,

the former represents the first application of increased optimism

in settings with imperfect information, although our prior work

has demonstrated empirical results using increased optimism in

Markov Games [10]. Our results are complementary, suggesting the

applicability of (increased) optimism in a broad range of settings.

We conclude this description of our work-in-progress by dis-

cussing a number of directions where further work is needed as

well as larger open problems.

2 RELATEDWORK
When multiple agents interact and learn in the same environment

and at the same time, each agent perceives its environment as

changing in time. This is the problem of non-stationarity, which

makes multi-agent learning considerably more difficult than the

single-agent setting. Counterfactual Regret Minimization (CFR)

[24] is an algorithm which has had remarkable success in this area,

specifically in two-player imperfect information extensive-form

games such as Poker [3, 15] and enjoys convergence guarantees in

the tabular setting. It has been extended in several ways to include

function approximation ([2], [22]). CFR still has some limitations:

perfect recall of agents is required, theoretical guarantees don’t

extend past the original setting, and terminal states are needed

for the recursive computation of counterfactuals. However, most

CFR-style approaches are not guaranteed to achieve last iterate

convergence.

The closest related work to this paper is [6], where zero sum

extensive form games were analyzed via the use of dilated distance

generating functions. It was shown that the Mirror Descent algo-

rithm, and its optimistic variant, could be decomposed into local

regret minimizers in each information set, satisfying the main CFR

theorem. They empirically show that optimistic versions of this

approach achieve last iterate convergence in settings including



Kuhn poker, but do not examine how these results can be applied to

policy gradient methods or the importance of increased optimism.

In [10], the Local No-Regret Learning (LONR) algorithm was

introduced which uses a copy of a no-regret algorithm in each state

to minimize total regret in a value-iteration style. LONR relaxes

the assumptions of CFR, primarily the reliance on perfect recall

and terminal states and is provably convergent in Markov Deci-

sion Processes (and modest extensions). Empirically, it was tested

on a class of two-player, general-sum Markov Games specifically

designed to be problematic for learning agents. Convergence to

equilibrium failed with most regret minimizers, but was achieved

in the last iterate through increased optimism using Optimistic

Hedge as the underlying no-regret algorithm. (Standard optimism

was insufficient.) This paper complements that work by exploring

the use of (increased) optimism in policy gradient methods and

providing theoretical guarantees in a simple case.

Policy gradient methods based on regret minimization and CFR

have attempted to fuse CFR’s central idea of local regret minimiza-

tion into broader settings, specifically model-free online learning.

Advantage-based Regret Minimization (ARM) [9] learns a cumu-

lative clipped advantage function that learns well in single-agent

partially observable environments. Actor-critic policy gradients

(PG) with connections to CFR have been studied in [18], but the-

oretically require a costly ℓ2 projection over the simplex. This is

problematic enough that softmax policies were used practically

instead, which is typical for most policy gradient methods. Neural

Replicator Dynamics (NeuRD) addresses this issue by introducing

a fix that allows for softmax policies [16]. It has strong connections

to PG, decomposes into Hedge in the tabular single-state setting,

and has connections to CFR run with Hedge. NeuRD corresponds to

PG with a modified update rule that bypasses the gradient through

the softmax layer, resulting in its benefits coming at a minimal cost

change (’one line fix’) to PG. This issue of last iterate convergence is

addressed by the authors, who use a non-standard form of entropy

regularization to drive the current policy to the equilibrium [17].

Motivated in part by stabilizing training of Generative Adver-

sarial Networks [4, 7] which can exhibit cyclical behavior, modi-

fications to standard gradient descent methods and no-regret al-

gorithms have been studied with the goal of achieving last iterate

convergence. In [1], the Multiplicative Weights Update (MWU, re-

ferred to from this point as Hedge) algorithm was studied under the

KL-divergence between the Nash policy and current policy, where

a non-negative lower bound was proven, showing divergence in

games with interior equilibria. In [4], Optimistic Mirror Descent

(OMD) is proposed to train Wasserstein GANs and OMD is shown

to provably converge in the last iterate for a large class of zero

sum games. [12] study last iterate convergence to saddle-points

in unconstrained convex-concave min-max optimization problems

using Optimistic Gradient Descent/Ascent. The constrained setting

was studied in [5] with the same last iterate guarantees using Opti-

mistic Multiplicative Weights Update (OMWU, Optimistic Hedge).

Optimistic Hedge dynamics are described by the authors as two

stages: monotonic improvement of the KL-divergence of the current

iterate to the min-max solution, upon which it enters a neighbor-

hood of the solution and becomes a contraction map converging

to the exact solution. As our method decomposes to Optimistic

Hedge in the single-state, tabular case, examining these dynamics

and changes induced by increased optimism in broader settings

such as the extensive-form games (EFGs) studied here is a line for

future work.

[14] give an analysis of OGDA (and other related algorithms)

as an approximation of the proximal point method. Importantly

for our work, they also study OGDA with generalized optimism,

which provides an approach to extending convergence results to a

broader range of parameters.

3 PRELIMINARIES
In this section, we provide the necessary background needed to

reach our main results. As we will be building on the results from

[16], we closely follow their notation and formulation.

3.1 Normal Form Games
A normal-form game (NFG) consists of a finite set of 𝑁 players

each with sets of actions {𝐴1, ..., 𝐴𝑁 } and a reward function u :

𝐴1 ×𝐴2 × ... ×𝐴𝑁 ↦→ 𝑅𝑁 for each joint action a � (𝑎1, 𝑎2, ..., 𝑎𝑁 )
that is a numerical value. The mixed strategy (policy) of player 𝑖

is 𝜋𝑖 ∈ Δ(𝐴𝑖 ), where Δ is the probability simplex over the given

set. The strategy profile 𝜋 = (𝜋1, ..., 𝜋𝑁 ), where 𝜋−𝑖 is the strategy
profile of every player except player 𝑖 . The expected value for player

𝑖 is 𝑢𝑖 (𝜋) � E𝜋 [𝑢𝑖 (𝑎) |𝑎 ∼ 𝜋] Define the best response for player
𝑖 as 𝐵𝑅𝑖 (𝜋−𝑖 ) � argmax𝜋𝑖

(𝑢𝑖 (𝜋𝑖 , 𝜋−𝑖 )) The strategy profile 𝜋∗ is a
Nash equilibrium is every player is best responding 𝜋∗

𝑖
∈ 𝐵𝑅𝑖 (𝜋∗−𝑖 )

for all 𝑖 ∈ 𝑁 . To evaluate policies, the NashConv is used to assess

their quality. 𝑁𝑎𝑠ℎ𝐶𝑜𝑛𝑣 (𝜋) = Σ𝑖∈𝑁𝑢𝑖 ((𝐵𝑅𝑖 (𝜋−𝑖 ), 𝜋−𝑖 )) − 𝑢𝑖 (𝜋).
𝑁𝑎𝑠ℎ𝐶𝑜𝑛𝑣 is referred to as exploitability in two player games.

3.2 No-regret Learning
One natural goal of an online learning algorithm is to minimize the

(external) regret, which compares the actions chosen by an agent

with the hindsight optimal action. An algorithm is considered no-

regret if its total regret experienced grows at 𝑜 (𝑇 ), which implies

its average regret goes to zero.

A well-studied class of no-regret algorithms is Follow the Regu-

larized Leader (FTRL) which includes a strongly-convex regularizer

term in the update. When the regularization function is chosen to

be the negative entropy, this leads to the Hedge algorithm,

𝜋𝑇 =
∏
(Σ𝑇−1𝑡=1 𝜂𝑡ui

𝑡 ) (1)

where

∏
is the softmax operator (

∏(𝑢𝑖𝑎) ∝ 𝑒𝑢𝑖𝑎 ), 𝑇 is the time

steps, and 𝜂 is the learning rate.

Hedge, along with all FTRL algorithms (including those gra-

dient descent methods falling into this class) are known to only

achieve convergence to equilibria in the average sense (i.e., it is

the time-averaged policy that approaches a Nash equilibrium) [13].

Optimistic variants of FTRL algorithms have been studied to over-

come this limitation and provide convergence guarantees for the

current policy [4, 5]. The optimistic variant of Hedge accomplishes

this by counting the current utility twice:

𝜋𝑇 =
∏
(Σ𝑇−1𝑡=1 2𝜂𝑡ui

𝑡 − 𝜂𝑡−1ui𝑡−1) (2)

To the best of our knowledge, increased optimistic variants of

no-regret algorithms have received little attention. ([6] consider
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general estimates of the most recent loss/reward in Optimistic FTRL,

but do not consider increased amounts. Empirical experiments

with increased optimism were performed in [10]). However, this

approach has been studied in gradient methods. FTRL, when the

regularizer is chosen to be the squared Euclidean norm (𝑅(𝑤) =
1

2𝜂 | |𝑤 | |
2

2
). corresponds to the Gradient Descent algorithm with a

constant learning rate, thus linking gradient methods and no-regret.

Gradient Descent Ascent (GDA) is gradient descent method for

problem settings with a minimizer/maximizer in an objective func-

tion 𝑓 (𝑥,𝑦) that captures among other things zero-sum NFGs. Op-

timistic Gradient Descent Ascent (OGDA) applies optimism, and

incorporates what is intuitively a “negativemomentum” termwhich

can be seen by writing out the explicit update rules as in [14]

𝑥𝑡+1 = 𝑥𝑡 − 𝜂∇𝑥 𝑓 (𝑥𝑡 , 𝑦𝑡 ) − 𝜂 (∇𝑥 𝑓 (𝑥𝑡 , 𝑦𝑡 ) − ∇𝑥 𝑓 (𝑥𝑡−1, 𝑦𝑡−1))

𝑦𝑡+1 = 𝑦𝑡 + 𝜂∇𝑦 𝑓 (𝑥𝑡 , 𝑦𝑡 ) + 𝜂 (∇𝑦 𝑓 (𝑥𝑡 , 𝑦𝑡 ) − ∇𝑦 𝑓 (𝑥𝑡−1, 𝑦𝑡−1))

[14] then introduce Generalized OGDA, which is parameterized

by hyperparemeters 𝛼 , 𝛽 which allow for non-standard amounts of

optimism:

𝑥𝑡+1 = 𝑥𝑡 − (𝛼 + 𝛽)∇𝑥 𝑓 (𝑥𝑡 , 𝑦𝑡 ) + 𝛽∇𝑥 𝑓 (𝑥𝑡−1, 𝑦𝑡−1)

𝑦𝑡+1 = 𝑦𝑡 + (𝛼 + 𝛽)∇𝑦 𝑓 (𝑥𝑡 , 𝑦𝑡 ) − 𝛽∇𝑦 𝑓 (𝑥𝑡−1, 𝑦𝑡−1)

where 𝛼 = 𝛽 recovers OGDA. In saddle-point problems under

certain conditions ([14], Theorem 5), OGDA remains linearly con-

vergent when a factor other than 2 is used.

3.3 Policy Gradients / Replicator Dynamics
Policy Gradient (PG) methods with function approximation are a

reinforcement learning technique that updates the policy param-

eters directly with respect to the gradient of the expected reward

[19]. While our approach does not require it, we assume for ease

of presentation that the policy is represented as a neural network.

More substantively, we assume that the last layer of the network

is a softmax layer, so that the policy is determined by the taking

the softmax of values in the penultimate layer. We denote these

penultimate values 𝑦 (𝑎;𝜃𝑡 ).
The goal of reinforcement learning to is maximize the sum of

(discounted) expected rewards. A Markov Decision Process is a

tuple 𝑀 = (S,A, 𝑃, 𝑟, 𝛾), where S is the state space, A is the

(finite) action space, 𝑃 : S×A → Δ(S) is the transition probability

kernel, 𝑟 : S × A → R is the (expected) reward function (assumed

to be bounded), and 0 < 𝛾 < 1 is the discount rate. The expected

reward, known as the state value function, is defined as 𝑣𝜋 (𝑠) =
E𝜋 [Σ∞𝑖=𝑡𝛾

𝑖−𝑡𝑟𝑡 |𝑠𝑡 = 𝑠] and the action value function is 𝑞𝜋 (𝑠, 𝑎) =
E𝜋 [Σ∞𝑖=𝑡𝛾

𝑖−𝑡𝑟𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. In actor-critic methods, the policy 𝜋

is parameterized by 𝜃 and the value function by 𝑤 . According to

the Policy Gradient theorem, updates are made using the gradient

∇𝜃 log𝜋 (𝑎; 𝑠, 𝜃 ) [𝑞(𝑠, 𝑎;𝑤) − 𝑏 (𝑠;𝑤)], where 𝑏 (𝑠;𝑤) is a variance

reducing baseline.

Replicator Dynamics (RD) from Evolutionary Game Theory are

a biologically inspired set of operators that describe the evolution

of populations. The links between RD and PG are examined in [16]

such as FTRL with negative entropy corresponds to RD [16]. As we

are now in the RL setting, the previously expected utilities (𝑢) will be

switched to the RL equivalents: namely, to the state-action values

𝑞 and state values 𝑣 . The Neural Replicator Dynamics (NeuRD)

algorithm updates similarly to PG, with a small modification. First,

we restate the parametric update rule of NeuRD to provide some

helpful background (Equation 9, [16]):

𝑦𝑡+1 (𝑎) = 𝑦 (𝑎;𝜃𝑡 ) + 𝜂𝑡 (𝑞𝜋𝑡 (𝑎) − 𝑣𝜋𝑡 ) (3)

Here, 𝑦𝑡+1 is the representation of 𝜋𝑡+1 before the softmax op-

erator is applied. Thus, 𝑦𝑡+1 (𝑎) can be thought of as a fixed target

value that the 𝑦 (𝑎;𝜃𝑡 ) are pushed towards. The term in parentheses

is referred to in the literature as the advantange, which is commonly

interpreted as regret. Intuitively, this target value is accumulating

regrets, similar to the regret sums tracked in the Regret Match-

ing [8] algorithm. This leads to the NeuRD update rule:

𝜃𝑡 = 𝜃𝑡−1 + 𝜂𝑡Σ𝑎∇𝜃𝑦 (𝑎;𝜃𝑡−1) [𝑞𝜋 (𝑎) − 𝑣𝜋 ] (4)

The NeuRD update rule is thus almost equivalent to the PG

update, differing only with respect to where the gradient is taken

(i.e., on the 𝑦𝑡 rather than the 𝜋𝑡 ).

4 GENERALIZED OPTIMISTIC NEURAL
REPLICATOR DYNAMICS

In this section, we propose a modification to the objective function

of the Neural Replicator Dynamics (4) and derive a new update rule

from it. Inspired by the results of OGDA presented in Section 3, we

propose a composite objective that includes an (𝛼 + 𝛽)-weighted
Euclidean distance of the current iterate objective together with a

𝛽-weighted Euclidean distance of the previous iterate objective as

one update:

𝜃𝑡 = 𝜃𝑡−1 − Σ𝑎∇𝜃
𝛼 + 𝛽
2

| |𝑦𝑡 (𝑎) − 𝑦 (𝑎;𝜃𝑡−1) | |2

+ Σ𝑎∇𝜃
𝛽

2

| |𝑦𝑡−1 (𝑎) − 𝑦 (𝑎;𝜃𝑡−2) | |2 (5)

This composite objective now includes a weighted combination

of the regular NeuRD update as well as a portion of the update from

the previous iteration. We refer to updates using Equation (5) as

Generalized Optimistic Neural Replicator Dynamics (GO-NeuRD).

We now state our main result:

Theorem 4.1. Generalized Optimistic Neural Replicator Dynamics
(GO-NeuRD), with 𝛼 = 𝛽 = 1, is equivalent to Optimistic Hedge in
the single-state all-actions tabular setting.
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Proof. We closely follow the argument from [16] with minor

changes to permit optimism:

𝜃𝑡 = 𝜃𝑡−1 − Σ𝑎∇𝜃
𝛼 + 𝛽
2

| |𝑦𝑡 (𝑎) − 𝑦 (𝑎;𝜃𝑡−1) | |2

+ Σ𝑎∇𝜃
𝛽

2

| |𝑦𝑡−1 (𝑎) − 𝑦 (𝑎;𝜃𝑡−2) | |2

= 𝜃𝑡−1 + (𝛼 + 𝛽)Σ𝑎 (𝑦𝑡 (𝑎) − 𝑦 (𝑎;𝜃𝑡−1))∇𝜃𝑦 (𝑎;𝜃𝑡−1)
− 𝛽Σ𝑎 (𝑦𝑡−1 (𝑎) − 𝑦 (𝑎;𝜃𝑡−2))∇𝜃𝑦 (𝑎;𝜃𝑡−2)

= 𝜃𝑡−1 + (𝛼 + 𝛽)𝜂𝑡Σ𝑎∇𝜃𝑦 (𝑎;𝜃𝑡−1) (𝑞𝜋
𝑡

− 𝑣𝜋
𝑡

)

− 𝛽𝜂𝑡−1Σ𝑎∇𝜃𝑦 (𝑎;𝜃𝑡−2) (𝑞𝜋
𝑡−1
− 𝑣𝜋

𝑡−1
)

In the tabular case with only a single state, ∇𝜃𝑦 (𝑎;𝜃𝑡 ) is the
identity matrix, so unrolling the GO-NeuRD update across 𝑇 − 1
rounds, we see that the GO-NeuRD policy is

𝜋𝑇 =
∏
(Σ𝑇−1𝑡=1 (𝛼 + 𝛽)𝜂𝑡 (u

𝑡 − u𝑡 · 𝜋𝑡 ) − 𝛽𝜂𝑡−1 (u𝑡−1 − u𝑡−1 · 𝜋𝑡−1))

𝜋𝑇 =
∏
(Σ𝑇−1𝑡=1 (𝛼 + 𝛽)𝜂𝑡u

𝑡 − 𝛽𝜂𝑡−1u𝑡−1)

since

∏
is shift invariant. This is equivalent to Optimistic Hedge

(2) when 𝛼 = 𝛽 = 1, thus the same policy on every round is used

and are therefore equivalent in this setting.

□

Theorem 4.1 links GO-NeuRD with Optimistic Hedge. Since

Optimistic Hedge is known to achieve last iterate convergence

when used by all players in a NFG [5, 20] it follows that GO-NeuRD

does as well when exact updates are used. More broadly, this allows

us to tap into the larger literature on last iterate convergence of

optimistic methods both for intuition about why adding optimism

to policy gradient methods should lead to last iterate convergence

more broadly as well as proof techniques that may allow us to make

this intuition precise.

The derivations in the proof of Theorem 4.1 also show that when

𝜂𝑡 = 𝜂 independent of 𝑡 , it can be absorbed into the choice of 𝛼

and 𝛽 . However, we maintain it as a separate parameter for ease of

comparison with prior experimental setups.

Algorithm 1 Generalized Optimistic Neural Replicator Dy-

namics (GO-NeuRD)

1: Initialize policy weights 𝜃0 and critic weights𝑤0

2: for 𝑡 from 0 to 𝑇 do
3: 𝜋𝑡−1 (𝜃𝑡−1) ←

∏(𝑦 (𝜃𝑡−1)
4: for 𝜏 ∈ SampleTrajectories(𝜋𝑡−1) do
5: for s,a ∈ 𝜏 do
6: R← Returns(𝑠, 𝜏, 𝛾 )

7: 𝑤𝑡 ← UpdateCritic(𝑤𝑡−1, 𝑠, 𝑎, 𝑅)

8: for 𝑠 ∈ 𝜏 do
9: 𝑣 (𝑠;𝑤𝑡 ) ← Σ𝑎′𝜋 (𝑠, 𝑎′;𝜃𝑡−1)𝑞𝑡 (𝑠, 𝑎′;𝑤𝑡 )
10: 𝜃𝑡 ← 𝜃𝑡−1+
11: (𝛼 + 𝛽)𝜂𝑡Σ𝑎′∇𝜃𝑦 (𝑠, 𝑎′;𝜃𝑡−1) (𝑞𝑡 (𝑠, 𝑎′;𝑤𝑡 ) − 𝑣 (𝑠 ;𝑤𝑡 )
12: −𝛽𝜂𝑡−1Σ𝑎′∇𝜃𝑦 (𝑠, 𝑎′;𝜃𝑡−2) (𝑞𝑡−1 (𝑠, 𝑎′;𝑤𝑡−1)
13: −𝑣 (𝑠;𝑤𝑡−1))

In our analysis we have described the implementation of Go-

NeuRD with a single state. In Algorithm 1 we give pseudocode that

adapts the NeuRD algorithm. All changes are in the final step (lines

10-13), where the additional gradient terms are included. Following

[16], the pseudocode presented is a version that samples trajectories.

Our experimental results that follow do a full traversal of all states

each iteration (for Kuhn poker). See the discussion and footnote

that follows.

Theorem 4.2.

5 EXPERIMENTS
5.1 Experimental Setup
We apply increased optimism to two benchmark settings. The first is

Rock, Paper, Scissors, a two-player zero-sum benchmark game. Next

we show results for increased optimism in Kuhn poker, a simplified

version of Poker. We base our experiments on the implementations

of the relevant games and algorithms in OpenSpiel: A Framework

for Reinforcement Learning in Games [11].

As our method is an extension of the Neural Replicator Dynam-

ics algorithm,
2
we use of the deep NeuRD feed-forward network

provided, as well as the Counterfactual Solver. To simplify the com-

parison as much as possible, all optional features of the networks

were disabled. This includes no hidden features, no skip connec-

tions, and no autoencoder. The network for Kuhn Poker consists of

two hidden layers of size 128, with ReLU activations. For RPS, we

used a smaller network of one hidden layer of size 13. No entropy

regularization was added, as our goal is to demonstrate the efficacy

of optimism as an alternative. A batch size of 100 was used, which

was shuffled and repeated once. A threshold of [-3, 3] was used

(we did not thoroughly investigate the impact that thresholding

the logit-gap has on the policy.) Training is done in a centralized

manner through self-play.

In all experiments, the representational power of the neural

network is fixed (i.e. the logit-gap is constant and low) We suspect

this limits the precision to which any of the policies can reach. We

leave analysis of these factors for future work and instead focus on

the effects of optimism.

We leave out a comparison to the entropy regularization used in

the original NeuRD experiments as it was not available in time. In

the future, we would like to compare with the entropy they used.

When increased optimism is used, this corresponds to setting

the parameter 𝛼 = 1 and putting the remainder in 𝛽 . For example,

an optimistic count of 5 would set 𝛼 = 1, 𝛽 = 4.

5.2 Rock, Paper, Scissors
Here we present results on Rock, Paper, Scissors (RPS), a simple but

widely used benchmark game. Each example uses a learning rate

𝜂 = 0.1. RPS is known to cause the policy of FTRL algorithms to

diverge and oscillate around its interior Nash equilibrium (
1

3
, 1
3
, 1
3
).

NeuRD thus exhibits this behavior.

We show three plots with varying ranges of optimism. In Fig-

ure 1a, we compare standard optimism of 2 with increased amounts

2
The OpenSpiel implementation of NeuRD differs from the one presented in [16] in

several respects, most notably that it performs updates with all states rather than

sampling. As an implementation of the sampling version is not yet available, we leave

experiments with it to our future work.
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4, 6, 8, and 10. In each case, the level of optimism used converges

faster than any of the optimistic counts less than it. An optimistic

count of 10 converges very quickly, followed by 8 and 6. Within

the total iterations shown, the optimistic count of 2 has not yet

converged.

In Figure 1b, we continue to increase the optimism. While each

value eventually converges, the pattern of larger counts converging

faster does not continue to hold.

In Figure 1c, very high levels of optimism are shown. All counts

converge except 80, which converges to 0.0, suggesting that very

high levels of optimism are unstable and can diverge.

These experiments demonstrate the benefits of increased opti-

mism that show a clear pattern where increased amounts of op-

timism cause the policy to converge to the optimal (Nash) policy

faster. They also show that very high levels of optimism can be

used. The use of optimism is not limitless however; beyond a certain

point, convergence begins to take longer. When optimism is too

high, the policy fails to converge at all (at least within the window

of iterations shown). Identifying how optimistic counts affect the

dynamics is an important line for future inquiry, which may be

problem-dependent (i.e. may depend on the maximum/minimum

reward, the range of reward function, or the condition number of

the problem[14].)

5.3 Kuhn Poker
Kuhn Poker is a simplified three card version of poker. The deck

consists of a Jack, Queen, and King. Each round, both players begin

with 2 chips. The last player remaining, or whoever has the highest

rank card at the end, wins. While simple, Kuhn Poker contains

all of the interesting properties of full poker such as imperfect

information and is modelled as an imperfect-information extensive-

form game.

The goal of these experiments is to highlight the benefits of

optimism (and increased optimism) in this more complex setting.

These are twofold: 1) when optimism is applied, the current policy

converges towards a Nash Equilibrium. 2) Increasing optimism can

speed up convergence.

In Figure 2a, NeuRD is shown first as a base line. There is a

parameterized family of equilibria, and experimentally, we found

that the NeuRD policy can vary considerably on different runs. Here

we plot a somewhat favorable run that is consistent with other runs.

Of particular note is the oscillation of the policy during training.

The number of iterations it takes to become relatively stable is high.

Thereafter, the policy continues to oscillate (note that the plot line

is thicker, and the range in which it oscillates within is larger than

the following plots.) In Figure 3a, the exploitability average for 10

runs is shown, and a plateau emerges.

In Figure 2b, GO-NeuRD is plotted with the standard count

of optimism of two. The policy stabilizes sooner but continues a

smooth drift throughout the rest of the run. Interestingly, while

the policy is drifting, the entire strategy profile remains in a (small)

𝜖−approximate equilibrium, as can be seen in Figure 3b.

In Figure 2c, GO-NeuRD is plotted with increased optimism of

2.5. The sample policy for this particular run stabilizes marginally

faster than with optimism of two, and does not drift as significantly

around multiple Nash equilibria. The exploitability in Figure 3c

reaches similar values on average to that in Figure 3b. Overall, the

benefits of increased optimism in this case are marginal and we

found that higher levels of optimism lead to non-convergence.

These experiments show that optimism achieves improved con-

vergence. While the optimistic policies are only an order of magni-

tude more precise, we did not optimize the settings of the network

representing the policy or training parameters such as the step

size. These may also be a factor in the limited benefits of increased

optimism, and we plan to explore this more in the future.

6 CONCLUSION
In this work-in-progress, we have shown how policy gradient ap-

proaches to multiagent RL, such as Neural Replicator Dynamics

can be extended to use (increased) optimism. We have shown that

our extended version of NeuRD corresponds to Optimistic Hedge

in the single state case, which provably has last iterate convergence.

More broadly, there is a strong theoretical basis for the ability of

optimistic methods to achieve last iterate convergence. Addition-

ally, we have emphasized the importance of tuning the degree of

optimism to control the rate and quality of convergence.

There are a number of directions for further work. In this work

we have experimented with adding optimism in the context of

known models. For reinforcement learning, we are interested in

the ability of optimism to achieve last iterate convergence with

sampling as well, and indeed NeuRD has been shown to work with

sampling, providing a natural next set of experiments. Similarly, is

adding optimism to actor-critic policy gradient methods (e.g. [18])

which are less precisely tied to regret minimization still effective?

Another important direction is exploring the effects of optimism,

both theoretically and empirically, in richer settings. In [10], an

increased amount of optimism was applied to local versions of

Optimistic Hedge in general sum Markov Games and last iterate

convergence was experimentally achieved. This suggests that per-

haps policy gradient approaches, such as GO-NeuRD, have potential

in imperfect information general sum EFGs / Markov Games. Sub-

stantial work is also needed to move beyond these empirical results

to provide theoretical guarantees in settings substantially beyond

zero-sum normal-form games. Relatedly, can we characterize the

optimal amount of optimism to apply in each setting? There has

been some recent work along these lines for bilinear games using

spectral methods [23]. An alternative to adding optimism is “extra-

gradient” methods, which calculate 2 gradients rather than one per

iteration (the second one can be thought of as first taking a “half”

step). This results in a greater computational cost per iteration, but

in centralized training setups where this is feasible the decrease

in the number of iterations needed may outweigh this in some

settings[14].
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(a) GO-NeuRD optimism [2, 10] (b) GO-NeuRD optimism [12, 20] (c) GO-NeuRD optimism [40, 200]

Figure 1: The current policy for the action Scissors in RPS with varying amounts of optimism. (a) Increased optimism leads to
faster convergence. (b) Higher levels of optimism still converge (c) Increasing the optimism too high leads to erratic behavior
in some counts (optimism of 80 converges to 0.0)

(a) NeuRD (stepsize = 1) (b) GO-NeuRD (2) (c) GO-NeuRD (2.5)

Figure 2: The current policy for the action Jack:Bet in Kuhn Poker for a sample run. (a) The NeuRD policy has no convergence
guarantees and oscillates. (b) GO-NeuRD with an optimistic count of 2 helps stabilize the current policy. (c) Increasing the
optimism to 2.5 stabilizes the current policy sooner in a sample run.

(a) NeuRD (stepsize = 1) (b) GO-NeuRD (2) (c) GO-NeuRD (2.5)

Figure 3: The exploitability of the current policy for Kuhn Poker for 10 sample runs (a) NeuRD current policy (b) GO-NeuRD
current policy. and (c) increased optimism of 2.5 for GO-NeuRD

6
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