
State Aware Principal Action Space Embedding for Centralized
MARL
Tapan Shah

GE Global Research
shah.tapan.r@gmail.com

ABSTRACT
Reinforcement Learning is increasingly being used to solve plan-
ning and control problems in dynamic environments. Centralized
multi-agent reinforcement learning (C-MARL), while maintaining
Markovian property, suffers with scaling of agents due to explosion
of action space which leads to algorithmic and hardware challenges.
Motivated by applications in autonomous wind farms, we propose
an encoding-decoding algorithm for state-aware embedding of ac-
tions from action space into a lower dimensional space. This allows
learning of joint action policies in a lower dimension, which can be
decoded back to the original space. Using a wind farm simulation
environment, we show that a combination of deep Q-learning and
action embedding can achieve faster convergence, higher rewards
and improved scalability. We want to highlight that all the re-
sults and plots in this paper are generated using simulated
data.

KEYWORDS
reinforcement learning, deep Q-learning, multi-agent systems, ac-
tion dimension reduction

1 INTRODUCTION
Typical operations research problems consist of devising optimal
policies for resource allocation/control/planning type of operations
in a multi-agent operational setup with global and local constraints.
Solving these problems has several applications, e.g. air-transport
[1], military planning [34], health-care [4], renewable energy [1]
etc. In the subsequent subsection, we describe one such example in
the context of an autonomous wind farm. Even though methods
described in the later part of the paper are generic enough for wide
scale application, we intend to highlight the novelty, both in the
application and the solution. Hence, we use two subsections to
introduce and motivate the research.

1.1 Motivation: Blade Heating System (BHS) for
management for autonomous wind farms

In colder countries, ice accretion on wind turbine blades is a com-
mon reason for loss of energy production. According to various
studies, the losses in annual energy production (AEP) can be as
high as 40 − 50 % [14, 21]. Additionally, there are other safety and
reliability issues. This necessitates deployment of an ice mitigation
system in a wind farm in cold locations.

A typical ice mitigation system consists of a blade heating system
(BHS) and an icing detector on each turbine. The BHS is an electric
coil which can heat up the blade and melt the ice. However, there
are certain trade-offs and constraints while operating the BHS.

(1) Starting the BHS on an iced wind turbine re-starts the power
generation from the turbine.

(2) The BHS requires power for its operation.
(3) If the expected wind speeds in the near future are low and

blade is iced, starting the BHS will generate no power. It
might be a better policy to not start the BHS and wait till
the wind speeds pick up.

(4) The best policy to operate the BHS is the one which maxi-
mizes the power output of the wind farm and at the same
time minimizing the power consumption of BHS.
The traditional method to solve such problems is to formulate
it as a constrained integer optimization problem,

max
i1, ...,in

Expected Farm Power, (1)

subject to Total BHS ≤ limit, (2)

where [ii , . . . ,in] is a binary vector of length equal to number
of turbines (n) and i = 1 indicates BHS should be started and
i = 1 indicates BHS should not be started for that turbine.
Techniques like branch-and-bound [16], simulated annealing
[12] and heuristics [10] are used to solve problems of this
type.

Challenges. Any agent (human or artificial) faces the following
challenges when deciding the optimal policy to start the BHS or
not.

(1) As discussed earlier, the optimal policy is a function not
only of the current wind speeds but also the expected wind
speeds in the near future. This stochasticity adds a dynamic
layer of complexity into the optimization problem. Robust
optimization techniques [3] must be incorporated to solve
the resulting nature of problems. Adding this robustness can
be prohibitively expensive.

(2) The solution times for solving such combinatorial optimiza-
tion problems can be large which is a bottleneck for edge
applications.

(3) At any given time, the action taken as per the policy affects
the environment in the next time instant. For example, if BHS
is operated at an instant, there can be no icing till the BHS
is stopped. This environmental change in the future because
of current action is difficult to incorporate in a traditional
combinatorial optimization setup.

(4) With a continuously changing climatic environment, the
mathematical formulation might require a continuous re-
fresh.



Figure 1: A schematic to illustrate the BHS management
problem as a reinforcement learning problem

1.2 Markov Decision Processes and
Reinforcement Learning

Markov decision process [22] is a mathematical framework which
models a discrete time Markovian stochastic process. This frame-
work is used for modeling decision policies in uncertain domains.
A typical Markov decision process is characterized by

(1) A set of possible environment states S.
(2) A set of possible actions A.
(3) A real values reward function R (s,a).
(4) A function T which describes the effect of each action on

each state.
Reinforcement learning [30] has become a popular method to devise
optimal policies for a Markov decision processes. In this method,
the optimal policy to choose the action for a given environment
state is continually learned using the reward gained for the previous
actions.

Cooperative Multi-agent reinforcement learning, whereby mul-
tiple agents simultaneously learn optimal policies for a common
reward, is a natural mathematical framework which can be used to
solve the problem described in Section 1.1. In Figure 1, we super-
impose the cooperative MARL framework on an autonomous wind-
farm to schematically describe BHS management. The motivation
of this work is to showcase a scalable and practical application of
reinforcement learning to solve a resource allocation/scheduling
problem under constrained environments.

2 PRIORWORK
Recently, there has been efforts to use reinforcement learning to
solve combinatorial optimization problems like traveling salesman
and bin-packing. In a recent work by Laterre et al. [15], the authors
develop a ranked rewards mechanism for single agent games and
combine that with deep neural networks and tree search to solve
the bin-packing problem. In a different work [11], the authors uses
heuristic to convert the output sequence into a feasible solution.

In another set of work, supervised deep learning methods like
Pointer Networks [33], which represent combinatorial optimization

problems as sequence-to-sequence learning problems, have been
developed. The main challenge there is the need for training set
consisting of optimal solutions, which can be expensive. To mitigate
this, the same architecture is combined with actor-critic methods
[2] to avoid the need for expensive training.

The authors in [36] combines Temporal Differencing methods
with negative reward mechanism (when constraints are violated)
to solve resource scheduling problems. There is other branch of
work like [18] where individual agents in the setup perform rein-
forcement learning and a common combinatorial optimization is
carried out to find the optimal learning parameters.

In another line work, the authors assume centralized training
and decentralized inference to propose methods like QTRAN [27],
QMIX [23], VDN [29]. This methods use a monotonic factorization
of the overall Q-value which is than passed onto each agent.

Narrowing our focus on centralized reinforcement learning, a
couple of very important work stands out. In [9], the authors use
coordination graphs to exploit conditional dependencies between
agents to decompose global reward function into a sum of agent-
local terms. In another very related work, Sparse cooperative Q-
learning [13] encodes dependencies in a coordination graph to
coordinate actions of only those agents, which require it. Some
other relevant work can be found in [7, 8]. Recently, in a work very
similar to ours, the authors in [5] decompose a policy into two
component: one that acts in a low-dimensional space of action rep-
resentation and another which transforms these into actual action.
They use supervised learning to learn the action representations.
Though the concepts in our paper were developed independently,
it is important to highlight that there is a significant overlap in the
concepts developed.

3 KEY CONTRIBUTIONS
The key contributions highlighted in this paper are summarized as
follows:

(1) We develop a simulator to simulate the operation of a wind
farm with multiple wind turbines, each with a ice detector
and a global operator (or a manager) to manage the BHS
operation.

(2) Assuming complete communication between the multiple
agents (wind turbines) and the operator, we formulate a
centralized MDP for the operator to jointly determine the
actions (whether to start of stop of the BHS) for each agent.

(3) The most important contribution is to develop a method,
State Aware Principal Action Embedding (SAPAE), to embed
the action into a lower dimensional space in a state-aware
manner with an easy decoding algorithm. This allows learn-
ing of joint actions in a lower dimensional space which is
then decoded to the original action space.

(4) Combining SA-PAE with DQN, we show a 100-fold improve-
ment in scalability and training times of the model.

4 BACKGROUND
A centralized MARL (C-MARL) can be characterized by a tuple
G = (S ,A,P ,R,N ,γ ) where s ∈ S describes the global state of
the environment. A central manager1 chooses the action tuple
1We use manager/operator/super-agent interchangeably in this paper.

2



(a1, . . . ,aN ) for all the N agents, s.t. ai ∈ A,∀i ∈ [1, . . . ,N ]. This is
followed by a transition in the state according to the state transition
function P (s ′ |s,a). The common global reward for each action tuple
and environment state is r (s,a) ∈ R and discount factor is γ . For
the rest of the paper, we assume A ∈ {0,1}.

4.0.1 Binary Action Assumption. The assumption that each agent
has a binary action space looks significantly restrictive. However,
for the class of combinatorial optimization problems which we
intend to address in this paper, it is a reasonable to make this as-
sumption.

4.1 Q-learning and DQN
Q-learning [25, 35] is one of the first methods developed for re-
inforcement learning. It defines a function Q : S × A → R that
measures the performance of each state-action pair combination.
The Q-value is defined using the following principle

Q (s ′,a) = r (s,a) + γ max
a

Q (s ′,a). (3)

In an iterative setting, the Q−value is computed as

Qnew (st+1,at ) = Q (st ,at )+α
(
r (st ,qt ) + γ max

a
Q (st+1,a) − Q (st ,at )

)
(4)

where α determines the proportion of the new and old values. The
Q-values for each combination of state and action are stored in
tabular form. At any given timestamp t with a state st , the action
which leads to the maximum Q-value is the optimal action. In a
pioneering recent work, non-linear neural networks are used to
approximate the Q-value [19]. The author combines this with a
technique called experience replay to develop deep Q-networks
(DQN).

4.2 Centralized DQN
Anaivemethod for using Q-learning/DQN in amulti-agent scenario
is using an independent learning scheme i.e. conducting learning
for each agent independently, ignoring the action and rewards of
each agent [20, 26, 31]. This clearly violates the Markov property.
Surprisingly, the method has shown impressive performance in
various settings. However, in a constraint environment, it leads to
inevitable challenges.

Instead, in another naive method, we convert the action vector of
length N into the corresponding integer. The range of the integers
thereafter form the resulting action space which can then be fed
into the DQN. For example, for N = 4, we get an action space of
[0, . . . ,15]. The method has obvious advantage and disadvantage.

(1) The Markov property is maintained.
(2) As N increases, the action space increases exponentially

and hence training becomes hard due to both challenges in
hardware and algorithmic challenges.
The dichotomy of the twomethods is similar to that of Binary
Relevance and Label Power-set methods used for multi-label
classification [32].

4.3 Constrained Centralized DQN
We propose two methods to ensure that the action vector recom-
mended by the central agent respects the global constraint.

(1) Reduced Action Space (RAS): DQN agent chooses the ac-
tion over a reduced action space i.e. instead of choosing the
action with highest Q-value, it chooses an action with the
highest Q-value satisfying the constraint,

(2) SoftActionPenalty (SAP): Design a reward functionwhich
has a large negative value when a constraint violating action
space is recommended.

5 STATE AWARE PRINCIPAL ACTION
EMBEDDING (SA-PAE)

As discussed in Section 4.2, learning joint action vectors in a cen-
tralized setting is not a scalable approach. Instead, we propose a
novel approach, State Aware Principal Action Embedding (SA-PAE)
where we project the joint action in a latent space, learn the optimal
policy over the reduced space and decode it back to the original
action space. We borrow concepts from two main topics in machine
learning:

(1) Feature aware label space dimension reduction for multi-
label classification [6, 17].

(2) Online/incremental versions of matrix factorization meth-
ods like singular value decomposition, principal component
analysis [24].

For each episode e of the MARL, we create a matrix S and A
by concatenating all the environment state vectors and the corre-
sponding action vectors in that episode. The matrix Ae is obtained
by concatenating all the matrices A starting from episode 0 to e .
Similarly, matrix Se is created. In episode e + 1 and timestamp t ,
for any state-action tuple (se (t ),ae (t )), we project ae (t ) onto a
latent space by a encoding/projection matrix V. Intuitively, this
matrix projects onto a space spanned by the first k principal com-
ponents of Ae conditioned on Se . This embedded action, ze (t ) is
rounded to a binary vector and converted to the corresponding
integer. The embedded action is then fed into the replay memory
of the downstream DQN. The action recommended by the main
agent will reside in the k dimensional latent space. This embedded
action is decoded back to the original action space, using a suitable
decoding strategy. A simple schematic describing SA-PAE is shown
in Figure 2. Adopting the CPLST algorithm from [6], we propose an
algorithm which combines DQN and SA-PAE in Figure 3. As storing
the concatenated matrices Ae and Se is impractical, we propose
a sequential version of SA-PAE, which is amenable to the DQN
framework.

Some math notations We use boldface small case letters for
vectors, boldface capital letters for matrices. If we use A and a
without any specification, then A is a obtained by concatenating
multiple instances of a. The matrix V is the n × k dimensional
principal projection matrix. IncrementalPC(:,k ) updates the first k
principal components using the algorithm described in [24]. For any
matrix X, X† =

(
XXT

)−1
X is defined as the pseudo-inverse [28].

For a p × n matrix X, the function rowMean(X) gives a n length
vector with means of each of the n rows. For a n length vector a,
updateRowMean(a, ·) updates the older row mean vector with the
new data.

3



Figure 2: A schematic to illustrate the principles of SA-PAE

5.1 Intuition for the proposed SA-PAE
Due to space constraints, we explain the intuition for the proposed
algorithm without going into the mathematical details (interested
readers can refer to [6]). Assuming an orthogonal encoding matrix
V and round based decoding, it can be shown that the hamming
loss between the actual action and the decoded (from the lower
dimension space) action is bounded by the sum of prediction error
(error between the action suggested by the agent and desired action
in the reduced space) and encoding error (error for projecting action
into a lower dimension space). Inspired by Orthogonal Canonical
Correlation Analysis, it can be shown that minimizing the encoding
error is equivalent to

min Trace
(
VZT (I − H) ZVT

)
,

where Z = A − ā and H is the pseudo-inverse of the state matrix
S. On the other hand, it can be shown that V obtained by first k
right singular vectors of Z minimizes the prediction error. Using
above concepts, it can be shown that, minimizing both prediction
and encoding errors is equivalent to

max Trace
(
VZT HZVT

)
.

This leads us to the encoding and decoding algorithms in Figure 4
and 5.

6 NUMERICAL SIMULATIONS FOR BHS
MANAGEMENT

In this section, we discuss results of several numerical simulations.
For conducting the numerical simulations, we setup a simulation
environment, which we explain in the next section.

6.1 BHS-Wind Farm Simulator
We build a simulation environment for N wind turbines, which,
at any timestamp t , inputs the state s and action vector a and
outputs the reward and the next state. The various components are
described below.

(1) State s: The state of a wind turbine n is defined as sn =
(wn ,in ) where wn is the wind speed and in is an indicator
variables which is 1 if icing is detected and 0 otherwise. The
total state of the wind farm is s = [s1, . . . ,sN ].

Figure 3: A schematic of reinforcement learning training
with DQN+Online SA-PAE.

Figure 4: Function to generate encoding matrix using incre-
mental state aware PCA.

(2) Reward r: The reward rn for a given state sn = (wn ,in ) and
action an for turbine n is defined in such a way that it is very
high when both an = 0 and in = 0 or both an = 1 and in = 1.
On the other hand, we define the reward to be low when

4



Figure 5: Decoding strategy to convert the embedded action
to an integer between 0 and 2n.

an = 0 and in = 1 or an = 1 and in = 0. The total reward is

r (s,a) =
N∑
n=0

rn (sn ,qn ) .

As discussed in Section 1.1, there is a limit to the total BHS
power consumed. In 4.3, we described two strategies to in-
corporate these constraints in a reinforcement learning for-
mulation, Reduced Action Space (RAS) and Soft Action
Penalty (SAP). For the RAS strategy, we further modify the
reward r as

r = −P , if r > C,

where C is the constraint and P is a large penalty value. The
intuition is to provide a large negative reward if the action
recommended by the agent is such that the constraint is
violated.

(3) State Transition: For wind speedwn , we describe an auto-
regressive model with lag 1 and i.i.d Gaussian noise to de-
scribe wind speed transition. The parameters of the AR
model are computed using the actual wind speeds collected
from an experimental site.

wn (t + 1) = max (0,αwn (t ) + β +N (0,σ ))

where α and β
are AR parameters andN (0,σ ) is zero-mean Gaussian noise
with variance σ 2. For icing indicator in , we again assume an
AR-type model given by

in (t + 1) = in (t ) if B (p) = 1,

where B (p) is a Bernoulli random variable with probability
of 1 equal to p. Additionally, we enforce that

in (t + 1) = 0 if an = 1.

This condition, which means that a turbine cannot be iced if
BHS is ON is very important, both theoretically and practi-
cally. In real deployment, it is obvious that if BHS is on at

any given time, icing will not happen on that turbine. Theo-
retically, this ensures that the environment is impacted by
the action of the agent 2.

6.1.1 Assumptions and comments on the simulator. For the pur-
pose of simplicity, we have made several overly simplistic assump-
tions in defining our simulator. They are 1) We have not considered
any spatial correlations in the state transitions. Typically, we ex-
pect certain correlation in the state of two nearby wind turbines. 2)
We assume melting of the ice and full power generation within 1
timestamp. This is typically not the case. A BHS takes finite time
to melt the ice and significant delay is present between the wind
turbine generating full power.

6.1.2 Episode. In deep Q-learning literature, episode is defined
as a finite sequence of states, action and rewards. The exponential
replay is conducted at the end of each episode. Typically, end of
episode is determined by a stopping criteria like win/loss in com-
petitive games. For our framework, we randomly select an integer
between 100 and 1000 to determine the number of time stamps in
an episode.

6.1.3 Cumulative Power Availability. We define average power
availability PAavд as the ratio of average total generated power and
average total available power, where the average is computed over
an episode. Cumulative power availability PAcum is the cumulative
mean of PAavд .

6.2 Results and discussion
In this section, we have multiple sub-sections where we show sim-
ulation results for different scenarios. All the simulation were per-
formed on a shared node with following specifications: 8 NVIDIA
GPU/node, 2 Intel 2.7 GHz processor and 512 GB DRAM/node.

6.2.1 Comparison with and without SA-PAE. In this section, we
compare the cumulative power availability with and without low
dimension action embedding using SA-PAE for both SAP and RAS
strategy to incorporate constraints (Figure 6). The simulation pa-
rameters for this set of results is in Table 1. As observed in Figure
6, SA-PAE+SAP converges to the same CPA as the other two strate-
gies without action embedding. At the same time, the constraint
is always respected. Another observation is that SAP strategy per-
forms slightly better than the RAS strategy. Though we do not have
a concrete explanation, we believe it is because the SAP strategy
allows for greater exploration of the action space.

6.2.2 Performance of SA-PAE as a function of p. In this section,
we study the performance of action embeddings as a function of p
(Figure 4), which determines the sparsity of the action vectors. The
simulation parameters for computing these set of results are the
same as in Table 1, except for N , k , p and C . They are specified in
Table 2.

As expected, Figure 7 confirms that the CPA reduces with a de-
crease in sparsity. Two observations are to be noted here. Firstly,
as the sparsity decreases (p increases), the policy is very conserva-
tive to start with and gradually moves towards the constraint as
compared to a higher sparsity scenario. As for p = 0.45, the gap
2If this was not true, the resulting problem will be a much simpler MDP where the
environment changes without any influence by the action.

5



Parameter Description Value
N number of agents (wind tur-

bines)
20

p Bernoulli parameter for icing
AR model

0.4

(α ,β ) Parameters of AR model for
wind speeds

(1,2000)

σ 2 Variance of Gaussian noise in
AR model for wind speeds

200

C Constraint on total BHS power 200
(u,v ) Number of nodes in 2 layer

DQN
(8,4)

γ Discount factor 4
bs DQN batch size 64
mem DQN replay memory 20000

Table 1: The simulation parameters used for Section 6.2.1.
Unless specified, the same parameters will be used for other
results.

Figure 6: Comparing the CPA and BHS power consumed
with and without action embedding, N = 20. The horizon-
tal black line is the constraint.

is very large. Secondly, at a lower sparsity, we do see instances
where the BHS power breaches the constraint. This is a drawback
of the method and going ahead, we intend to make this more robust
without making it overly conservative.

6.2.3 Performance of SA-PAE as function of k . In this section,
we study the variation of SA-PAE as a function of dimension of the
reduced action space (Figure 8). To zoom into the initial trajectories,
we limit to only 500 episodes. The simulation parameters are the
same as in Table 2. Based on Figure 8, certain interesting obser-
vations can be made. The difference between the maximum and
minimum CPA, after convergence is around 2 percentage points.

Figure 7: Comparing the CPA and BHS power consumed as
a function of p, N = 40. The horizontal black line is the con-
straint. SAP strategy is used.

Parameter Description Value
N Number of agents (wind tur-

bines)
40

p Bernoulli parameter for icing
AR model

0.05 . . . ,0.45

C Constraint on total BHS power 400
k Dimension of laten space action 8

Table 2: The simulation parameters used for Section 6.2.2.
Most parameters are the same as specified in Table 1.

As the dimension of the reduced space increases, the time taken by
the agent to start respecting the constraint increases. Alternately,
as the dimension of the reduced space decreases, the agent becomes
increasingly conservative in order to avoid breaching the constraint.
This is due to significant information loss in the lower dimension.

6.2.4 Scalability of PA-SAE. In this section, we show how using
SA-PAE dramatically improves the scalability of the system (Figure
9). The simulation parameters for computing these set of results
are the same as in Table 1, except for N , k andC . We vary N , k and
C by the following equation,

k = min (20,max (4,N /5)) (5)
C = 10N , N ∈ [10,15, . . . ,100] . (6)

Using the resources we have, we could not train the DQN without
action embedding for N > 25.

7 CONCLUSIONS
In this paper, we discuss a method to embed the joint action of a
central agent in a multi-agent setting to improve scalability and
performance while maintaining the Markov property. The key idea
is to use state aware online principal component analysis to embed

6



Figure 8: Comparing the CPA and BHS power consumed as
a function of k with SA-PAE+SAP, N = 40. The horizontal
black line is the constraint.

Figure 9: Comparing the CPA and BHS power consumed as
a function of k with SA-PAE+SAP, N = 40. The horizontal
black line is the constraint.

the action into a space of reduced dimension. This novel technique
allows the agent to perform better both in terms of performance
and scale compared to an agent without any embedding.

7.1 Comparison with coordinated graphs
methods

In [9], the authors use coordination graphs to simplify the action
space in a centralized MARL. Similarly, in [13], the sparsity in
coordination graphs is encoded to reduce the dimension of action
space. Both the methods require a knowledge of the coordination
graph. In contrast, SA-PAE can be considered a method where the

intrinsic structure within the action space is learned in a state-aware
manner and encoded simultaneously. We believe, our method is
much more generic and easy to implement.

7.2 Comparison with Independent Q-learning
and related methods

As showed in [20, 26, 31], ignoring the Markov property and having
each agent learn independently is a technique which has been suc-
cessful in several applications. However, in a constrained scenario
like ours, the policy so obtained is very conservative i.e. each agent
operates in a fearful fashion to avoid breaching the overall con-
straint. In another line of work like QMIX [23], VDN [29] etc. which
assumes centralized training and decentralized policy making, the
constrained environment again leads to overtly conservative poli-
cies.

7.3 Comparison with action representations
proposed in [5]

This work became visible to us very recently and by that time most
of the current manuscript was completed. As a result, we were
unable to do a proper comparison with the methods proposed in
the paper. As this is the only other work which does not assume
apriori information on the action representations, we believe a
thorough comparison is necessary and we intend to complete that
exercise in a future extensions if this work.

7.4 Future Work
There are several research directions which need to be investigated
for efficiently using RL for similar problems.

(1) A more rigorous investigation of relation between number
of agents N , sparsity p and reduced dimension k is needed
to understand the performance limits and optimal setting.

(2) A state-aware non-linear or manifold embedding might cap-
ture the structure of the action space better and needs further
exploration.

(3) Another area of research is learning policies for a constrained
cooperative MARL in a decentralized scenario i.e. each agent
independently learns an optimal policy and satisfies the
global constraint simultaneously. This directs towards an
Empathetic Reinforcement Learning framework.

REFERENCES
[1] Cynthia Barnhart, Peter Belobaba, and Amedeo R Odoni. 2003. Applications of

operations research in the air transport industry. Transportation science 37, 4
(2003), 368–391.

[2] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[3] Dimitris Bertsimas and Melvyn Sim. 2003. Robust discrete optimization and
network flows. Mathematical programming 98, 1-3 (2003), 49–71.

[4] Margaret L Brandeau, François Sainfort, and William P Pierskalla. 2004. Opera-
tions research and health care: a handbook of methods and applications. Vol. 70.
Springer Science & Business Media.

[5] Yash Chandak, Georgios Theocharous, James Kostas, Scott M. Jordan, and Philip S.
Thomas. 2019. Learning Action Representations for Reinforcement Learning.
CoRR abs/1902.00183 (2019). arXiv:1902.00183 http://arxiv.org/abs/1902.00183

[6] Yao-Nan Chen and Hsuan-Tien Lin. 2012. Feature-aware label space dimen-
sion reduction for multi-label classification. In Advances in Neural Information
Processing Systems. 1529–1537.

7

http://arxiv.org/abs/1902.00183
http://arxiv.org/abs/1902.00183


[7] Gabriel Dulac-Arnold, Richard Evans, Peter Sunehag, and Ben Coppin. 2015.
Reinforcement Learning in Large Discrete Action Spaces. CoRR abs/1512.07679
(2015). arXiv:1512.07679 http://arxiv.org/abs/1512.07679

[8] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2017. Counterfactual Multi-Agent Policy Gradients. CoRR
abs/1705.08926 (2017). arXiv:1705.08926 http://arxiv.org/abs/1705.08926

[9] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. 2002. Coordinated rein-
forcement learning. In ICML, Vol. 2. Citeseer, 227–234.

[10] Juraj Hromkovič. 2013. Algorithmics for hard problems: introduction to combinato-
rial optimization, randomization, approximation, and heuristics. Springer Science
& Business Media.

[11] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu.
2017. Solving a new 3d bin packing problem with deep reinforcement learning
method. arXiv preprint arXiv:1708.05930 (2017).

[12] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by
simulated annealing. science 220, 4598 (1983), 671–680.

[13] Jelle R Kok and Nikos Vlassis. 2004. Sparse cooperative Q-learning. In Proceedings
of the twenty-first international conference on Machine learning. 61.

[14] Fayçal Lamraoui, Guy Fortin, Robert Benoit, Jean Perron, and Christian Masson.
2014. Atmospheric icing impact on wind turbine production. Cold Regions Science
and Technology 100 (2014), 36–49.

[15] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David
Kas, Karl Hajjar, Hui Chen, Torbjørn S Dahl, Amine Kerkeni, and Karim Beguir.
2019. Ranked Reward: Enabling Self-Play Reinforcement Learning for Bin packing.
(2019).

[16] Eugene L Lawler and David EWood. 1966. Branch-and-bound methods: A survey.
Operations research 14, 4 (1966), 699–719.

[17] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. 2014. Multi-label
classification via feature-aware implicit label space encoding. In International
conference on machine learning. 325–333.

[18] Sadayoshi Mikami and Yukinori Kakazu. 1994. Genetic reinforcement learning
for cooperative traffic signal control. In Proceedings of the First IEEE Conference
on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
IEEE, 223–228.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[21] Olivier Parent and Adrian Ilinca. 2011. Anti-icing and de-icing techniques for
wind turbines: Critical review. Cold regions science and technology 65, 1 (2011),
88–96.

[22] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[23] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2003.08839 (2020).

[24] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. 2008. In-
cremental learning for robust visual tracking. International journal of computer
vision 77, 1-3 (2008), 125–141.

[25] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering
Cambridge, UK.

[26] Sandip Sen, Mahendra Sekaran, John Hale, et al. 1994. Learning to coordinate
without sharing information. In AAAI, Vol. 94. 426–431.

[27] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi.
2019. QTRAN: Learning to Factorize with Transformation for Cooperative Multi-
Agent Reinforcement Learning. CoRR abs/1905.05408 (2019). arXiv:1905.05408
http://arxiv.org/abs/1905.05408

[28] Gilbert Strang, G Strang, G Strang, and G Strang. 1993. Introduction to linear
algebra, vol. 3. Wellesley-Cambridge Press Wellesley, MA 42 (1993).

[29] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2018. Value-decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of the 17th international confer-
ence on autonomous agents and multiagent systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2085–2087.

[30] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[31] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[32] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining (IJDWM) 3, 3
(2007), 1–13.

[33] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in neural information processing systems. 2692–2700.

[34] Harvey M Wagner. 1975. Principles of operations research: with applications to
managerial decisions. Technical Report. Prentice-Hall Englewood Cliffs, NJ.

[35] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[36] Wei Zhang and Thomas G Dietterich. 2000. Solving combinatorial optimization
tasks by reinforcement learning: A general methodology applied to resource-
constrained scheduling. Journal of Artificial Intelligence Reseach 1 (2000), 1–38.

8

http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1905.05408
http://arxiv.org/abs/1905.05408

	Abstract
	1 Introduction
	1.1 Motivation: Blade Heating System (BHS) for management for autonomous wind farms
	1.2 Markov Decision Processes and Reinforcement Learning

	2 Prior Work
	3 Key Contributions
	4 Background
	4.1 Q-learning and DQN
	4.2 Centralized DQN
	4.3 Constrained Centralized DQN

	5 State Aware Principal Action Embedding (SA-PAE)
	5.1 Intuition for the proposed SA-PAE

	6 Numerical simulations for BHS management
	6.1 BHS-Wind Farm Simulator
	6.2 Results and discussion

	7 Conclusions
	7.1 Comparison with coordinated graphs methods
	7.2 Comparison with Independent Q-learning and related methods
	7.3 Comparison with action representations proposed in DBLP:journals/corr/abs-1902-00183
	7.4 Future Work

	References

