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ABSTRACT
Human language and thought are characterized by the ability to

systematically generate a potentially infinite number of complex
structures (e.g., sentences) from a finite set of familiar components
(e.g., words). Recent works in emergent communication have dis-
cussed the propensity of artificial agents to develop a systematically
compositional language through playing co-operative referential
games. The degree of structure in the input data was found to affect
the compositionality of the emerged communication protocols. Thus,
we explore various structural priors in multi-agent communication
and propose a novel graph referential game. We compare the effect
of structural inductive bias (bag-of-words, sequences and graphs) on
the emergence of compositional understanding of the input concepts
measured by topographic similarity and generalization to unseen
combinations of familiar properties. We empirically show that graph
neural networks induce a better compositional language prior and a
stronger generalization to out-of-domain data. We further perform
ablation studies that show the robustness of the emerged protocol in
graph referential games.

KEYWORDS
multi-agent communication; graph representation; emergent lan-

guages

1 INTRODUCTION AND RELATED WORK
Human communication and reasoning are characterized by the

ability to systematically generate a potentially infinite number of
complex structures (e.g., sentences) from a finite set of familiar com-
ponents (e.g., words). For instance, if a person knows the meaning
of utterances such as ‘red circle’ and ‘blue square’, she can easily
understand the utterance ‘red square’ even if she has not encountered
this particular combination of shape and color in the past. This type
of generalization capacity is referred to as compositionality [1, 3, 22]
or systematic generalization [2].

The ability of artificial agents to develop a compositional language
has been investigated through emergent communication studies. Mo-
tivated by the assumption that human language derives meaning
from its use [27], the agents are left to develop a communication
protocol from scratch based on solving a shared task. To this end,
the agents learn to communicate in end-to-end virtual environments
such as referential games. A referential game (Figure 1) consists of a

*The first two authors contributed equally.

perceptual input, agents, communication channel (discrete symbols
without any predefined meaning) and an action to be rewarded (e.g.,
distinguishing the target input among distractors). This perspective
on learning to communicate mitigates some of the issues observed in
supervised training of language models such as sample inefficiency
and exploiting superficial statistical signals [3, 11]. Treating commu-
nication as an interactive, goal-driven multi-agent learning problem
rather than a static supervised learning task is more intuitive and
natural.

Communication success in a referential game is known to be
insufficient to guarantee emergence of a compositional language
[10]. Several factors that influence compostionality in emergent
communication games have been investigated of late, such as the
degree of structure in the input data using the examples of images
and sequences [12], periodical resetting of one of the agents [14],
and constraints related to the capacity and bandwidth of the agents
[20]. However, graph representation learning has not been explored
in emergent communication. Sequential inputs used in existing work
imposes artificial order on independent properties (such as shape
and color; Figure 1). Relational and modular entities that can be
naturally represented as graphs provide a more challenging and
realistic grounding for the communication protocol.

In this work, we investigate the effect of varying the representa-
tion of the perceptual input and the corresponding representation
learning methods on the systematic generalization, task success and
compositionality of the emerged language. In the existing work on
emergent communication, sequences and bag-of-words are most
commonly used as input data [4, 12]. Given the recent resurgence
of explicit structural bias in neural networks (e.g., graph neural
networks), we propose two graph-based referential games of a vary-
ing degree of complexity. We evaluate the hypothesis that graph
representations encourage compositionality and generalization. The
study of the effect of data structures on compositional understanding
reflected in the language is an important step towards learning to
communicate in more complex and realistic environments.

Our contributions are as follows:

• We propose two graph referential games. In the first game, we
focus on learning the hierarchy of concepts (e.g., red square),
properties of a concept (e.g., color) and property types (e.g.,
red) represented using a tree. The second game implements
the graph isomorphism test for arbitrary graphs in the multi-
agent environment with a communication channel.
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Figure 1: Referential game. The first agent (the speaker) must
communicate the target object to the second agent (the listener).
Based on the received message, the listener learns to recognize
the target object among a set of distractors. A training sample
in this game consists of the target and a set of distractors, all of
which come from the same distribution and are sampled with-
out replacement.

• We provide baseline agents for the graph referential games
based on Graph Convolutional Networks (GCNs) [9] and
GraphSAGE [6] in a graph-to-sequence model. We compare
these models with sequence-to-sequence [24] and bag-of-
words networks in terms of task success, generalization to
unseen combinations of familiar concepts (e.g., if a model
trained using the ‘red square’ and ‘blue circle’ examples can
understand the meaning of a ‘red circle’) and compositionality
of the emerged language. Our results show that graph repre-
sentation learning methods induce a better compositionality
prior and achieve stronger generalization to out-of-domain
data.

• We verify that the agents’ ability to solve the task is grounded
in the communication protocol they develop. Our analysis
shows that a change in the message results in a selection of a
different object, i.e. the listener relies on the message sent by
the speaker to correctly identify the target among distractors.
We also investigate whether the agents learn an order invariant
representation of objects by shuffling the distractors and the
target. We posit that the communication channel is robust
with respect to the changes in the ordering of the target and
the distractors.

2 ENVIRONMENTAL SETUP
2.1 Multi-Agent Referential Games

Referential games that we study in this paper are variants of the
Lewis Signaling Game [13], which has been extensively used in
emergent communication.

A Lewis Signaling Game involves two agents of fixed roles: the
speaker and the listener. The speaker has access to some information
(the target) which the listener cannot directly observe. The speaker
then sends a message describing the target and the listener acts upon
receiving the message by deducing the target based on the message.
Referential games, in particular, are composed of the listener receiv-
ing the message and a set of entities consisting of the target and

A1 C7B3

Game 1

A1 C7B3
A1

C7
B3

2

Game 2

2 34
2 3

4

3

2 3
2

3
4

2

2

Figure 2: Input representations in Game-1 and Game-2. In
Game-1, the hierarchy of an object and its properties is rep-
resented as a tree of a fixed topology. Each child node encodes
the property value (e.g. property: A, property value: 1) in a con-
catenation of the one-hot vectors representing the property and
the property value, respectively. In baseline representations, we
remove the graph topology and use 1) a sequence of a randomly
ordered one-hot vectors 2) bag-of-words representation with no
structural prior. In Game-2, graph topology varies since the
edges are randomly assigned.

distractors. In each such set, the target and distractors are sampled
without replacement from the same distribution.

Formally, the game is played as follows. The target 𝑡𝑖 is observed
by the speaker which then transmits a message 𝑚 to the listener.
In turn, the listener selects a response 𝑟𝑘 . For each target 𝑡𝑖 there
is one correct response 𝑟𝑖 , i.e. distinguishing the target among the
distractors. The agents are rewarded with a payoff 𝑢 if and only if
the listener identifies the target:

𝑢 =

{
1 if 𝑘 = 𝑖,
0 otherwise.

Note that the payoff does not depend on the message sent, and so
the agents are rewarded for solving the task and not for the emerged
communication protocol.

This framework can be also considered as a co-operative partially-
observable Markov game [15]. The target and the distractors can
be interpreted as permutations of combinatorial properties such as
shape and color (Figure 1). They can be represented as symbolic
vectors, images, graphs or any efficient data structure able to encode
complex entities.

2.2 Graph Referential Games
We introduce two graph referential games. In Game-1, we use

trees to represent a hierarchy of concepts (e.g. red square) composed
of different properties (e.g. color, shape). In Game-2, we imple-
ment graph isomorphism test for arbitrary graphs. Figure 2 shows
the input data to our graph referential games. In each game, we
compare the graph representation to a corresponding sequence and
bag-of-words encoding in terms of task success, out-of-domain gen-
eralization and language compositionality. In each game, a sample
consists of a target graph and the set of 𝐾 distractors. We obtain a
collection of these samples and create the train, validation and test
splits (60%/20%/20%).

2



Game-1: hierarchy of concepts and properties. In this game, we
construct a tree from a vector of perceptual dimensions [𝑝1, 𝑝2, . . . , 𝑝𝑛]
where 𝑛 corresponds to the number of properties and 𝑝1, 𝑝2, . . . , 𝑝𝑛
denote the number of possible types per property. Each tree has the
same number of properties 𝑛 and they only differ in the property
values. Formally, each tree is an instance of a graph G(V, E) where
V corresponds to the set of all nodes representing unique properties,
and a ‘central’ node such that |V| = 𝑛 + 1. The set E comprises of
undirected edges that connect two nodes with a relation. E consists
of the edges between the central node and its children, that represent
individual properties, such that |E | = 𝑛. All the nodes except the
central node are represented using node features. The node features
consist of a concatenation of the property encoding and the type en-
coding (represented as one-hot vectors). The central node is encoded
as an empty node and no edge features are used. For the purpose
of providing a simple graph baseline, we use one concept (the root)
and one level of properties (successors of the root). This representa-
tion can be easily extended to a deeper hierarchy of properties and
sub-properties.

Game-2: graph isomorphism test. We introduce Game-2 to inves-
tigate whether the agents can learn graph topology. Since Game-1
comprises trees of a fixed structure that can be directly represented as
sequences or bag-of-words, we want to evaluate the graph encoders
using arbitrary graphs of a varying structure. Such graphs can be used
to represent relations between arbitrary entities, e.g. connections be-
tween users of a social media platform. Game-2 defines a more
realistic and flexible framework for multi-agent communication on
graphs. In Game-2, each graph G(V, E) is defined over the number
of nodes 𝑁 , |V| = 𝑁 , and the set of undirected edges E, such that
|E | ∈ [𝑁 − 1, 𝑁 (𝑁−1)

2 ] (see Figure 2). For a graph of 𝑁 nodes, the

total number of edges is sampled from the [𝑁 − 1, 𝑁 (𝑁−1)
2 ] interval,

where 𝑁 (𝑁−1)
2 is the number of edges in a complete graph. In a

given instance of the game, 𝑁 is fixed for all targets and distractors.
We create a directed edge (𝑖, 𝑗) where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 } and 𝑖 ≠ 𝑗

by sampling the source 𝑖 and the destination 𝑗 from V. We then add
the corresponding ( 𝑗, 𝑖) edges to the graph to make it undirected. We
add a self-loop to each node to include its own features in the node
representation aggregated through message passing. We use node
degrees converted to one-hot vectors as the initial node features.

In both games, we use two baseline representations— sequences
(Seq) and bag-of-words (BoW). These data representations are con-
structed similarly as in the existing work on emergent communica-
tion [4, 10, 12]. A sequence consists of randomly ordered features,
which in our games are equivalent to the node features in the graph
representations. Bag-of-words representation does not impose any
order on the features (see Figure 2).

2.3 Training and Models
In order to propagate the gradients through a non-differentiable

communication channel, we train the games using a Gumbel-Softmax
trick. The speaker produces a softmax distribution over the vocabu-
lary 𝑉 , where 𝑉 refers to the finite set of all distinct words that can
be used in the sequence generated by the speaker. Similar to [18, 23],
we use the ‘straight through’ version of Gumbel-Softmax [7, 17]

during training to make the message discrete. At test time, we take
the argmax over the whole vocabulary.

In our graph referential games, the listener receives the discretized
message𝑚 sent by the speaker along with the set of distractors 𝐾 and
the target graph 𝑑∗. The listener then outputs a softmax distribution
over the |𝐾 | + 1 embeddings representing each graph. The speaker 𝑓𝜃
and the listener 𝑔𝜙 are parameterized using graph neural networks.
We formally define it as follows:

𝑚(𝑑∗) = Gumbel-Softmax(𝑓𝜃 (𝑑∗))

𝑜 (𝑚, {𝐾,𝑑∗}) = 𝑔𝜙 (𝑚, {𝐾,𝑑∗})

In order to handle raw graph input, the speaker and the listener are
parameterized using a graph encoder. The speaker additionally uses
a sequence decoder to generate a message. Following the conven-
tional encoder-decoder architecture, the graph encoder first generates
node embeddings for each node, and then it uses them to construct
an embedding of the entire graph. The sequence decoder takes the
graph embedding as input and generates a message. A graph encoder
consists of the node representation learning method (e.g. Graph Con-
volutional Network (GCN) [9]) and a graph pooling method. Node
representations are computed for each node 𝑣𝑖 through neighborhood
aggregation that follows the general formula of:

ℎ
(𝑙+1)
𝑣𝑖 = ReLU

©­«
∑
𝑗 ∈𝑁𝑖

ℎ
(𝑙)
𝑣𝑗 𝑊

(𝑙)ª®¬
where 𝑙 corresponds to the layer index, ℎ𝑣𝑖 are the features of the
node 𝑣𝑖 ,𝑊 refers to the weight matrix, and 𝑁𝑖 denotes the neigh-
borhood of the node 𝑣𝑖 . In this paper, we use a standard GCN ar-
chitecture as well as GraphSAGE [6], an extension of GCN which
allows modifying the trainable aggregation function beyond a sim-
ple convolution. GraphSAGE learns aggregator functions that can
induce the embedding of a new node given its features and the neig-
borhood, without re-training on the entire graph. The GraphSAGE
encoders are thus able to learn dynamic graphs. In this paper, we
experiment with commonly used ‘mean’, ‘pool’ and ‘gcn’ aggrega-
tor types. In order to compute the graph embedding, we use simple
graph pooling methods. A graph embedding is obtained through
a linear transformation of the node features using a mean or sum.
A graph embedding vector in our graph-to-sequence implementa-
tion of the speaker corresponds to the context vector in the existing
sequence-to-sequence implementations.

Similarly as in sequence-to-sequence architectures, the sequence
decoder in graph-to-sequence outputs a probability distribution over
the whole vocabulary for a fixed message length which is then
discretized to produce the message.

3 EXPERIMENTS & ANALYSIS
We present the comparative analysis of the different data repre-

sentations presented in this paper. In this paper, we do not aim to
propose the best model to encode a given data representation but
instead perform a comparative analysis of models with varying lev-
els of structural inductive bias on both graph referential games. In
particular, we aim to answer the following questions:
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• Which model provides the best inductive bias for generaliza-
tion? Does the complexity of the game affect generalization
across different models?

• How does the compositionality of the learned protocols differ
between models? What structural priors are beneficial for
agents to learn a compositional protocol?

Furthermore, we perform ablation studies on graph based repre-
sentations and analyze different graph neural network architectures
on the basis of generalization and compositionality. We used the
Deep Graph Library [26] when using graphs and EGG [8] for build-
ing the framework while the whole codebase was written using
PyTorch [19].

3.1 Generalization and Inductive Bias

Game type BoW Seq Graph

Game-1
[10, 6, 8] 99.2 ± 1.1 97.5 ± 1.5 99.0 ± 0.6

[10, 6, 8, 8, 10] 98.1 ± 0.5 95.4 ± 2.7 98.8 ± 0.13

Game-2
15 nodes 95.1 ± 0.59 91.3 ± 0.38 95.4 ± 0.57
20 nodes 94.3 ± 0.85 89.7 ± 1.28 95.3 ± 1.36
25 nodes 93.8 ± 0.22 89.5 ± 1.3 94.9 ± 0.95

Table 1: Test accuracies on both games. For Game-1, the Game
type refers to the perceptual dimensions used while in Game-2,
it refers to number of nodes used.
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Figure 3: Game-1 (left) and 2 (right) test accuracies. Both plots
show the accuracy on the test dataset which is the set of unseen
combinations of distractors and target. For Game-1, we used a
perceptual dimension of [10, 6, 8, 8, 10] and the speaker sends
a fixed length (5) message of vocabulary size of 10. For Game-2,
we used 20 nodes and the message consists of 20 words each of
vocabulary size 20. Both games use 9 distractors. All runs are
averaged over 3 seeds.

For both of our games, we measure generalization using test ac-
curacy on a set of unseen combinations of targets and distractors.
While the agents have seen the target with some other combination
of distractors in the training set, they haven’t seen the ‘test’ combi-
nations during training. In Table 1 we show the test accuracies for
both games where the speaker observes a target and sends a unique
code to the listener such that it is able to distinguish the target when
seen in combination with other distractors. This generalization to

unobserved pairs of (target, distractors) means that both the speaker
and the listener learned to 1) extract relevant properties from the
data (no matter how they are represented as input) 2) create a unique
code-book to refer to these essential properties which are used to
identify the target.

When comparing the data representations, we see that a graph
based neural network consistently outperforms the bag-of-words and
sequence based networks. An interesting point to note here is that
the bag-of-words model easily overfit to the training data and thus
performed the worst during test time. On the other hand, the graph
based model did not give the best training accuracy but performed
the best during test time.

3.2 Compositionality and Inductive Bias
We use two measures of compositionality, namely topographic

similarity and out-of-domain generalization, and study the effect of
varying structural priors on the input representation.

Figure 4: Intuition behind topographic similarity. In our analy-
sis, M-Space corresponds to the input space (e.g. graphs) and
S-Space refers to the message space. In the example (b) the
emerged language is random: the neighbors surrounding a
point in the meaning space suggest nothing about the location
of the corresponding message, and so the topographic similarity
will be low. Examples (c) and (d) show languages of high topo-
graphic similarity, as objects that are close in the meaning space
are mapped to similar signals. Image source: [5].

Topographic similarity. We use topographic similarity as one
measure for compositionality, following common practice in this
domain of referential games [12, 14]. We take the complete dataset
and compute the cosine distances between all possible pairs of the
input features. For this purpose, we linearize all the input features
into a single dimension vector. Specifically, we concatenate the
features of all the nodes in the graph in the same order as done in
sequences/bag-of-words for a fair comparison.1 Then we calculate
the Levenshtein distances between every pair of message which the
speaker produces over the whole dataset. The topographic similarity
is then defined as the negative Spearman correlation coefficient 𝜌
between the aforementioned cosine distance and the Levenshtein
distance. Its value ranges from -1 to 1.
1We also tried shuffling the order of concatenation and the results were similar.
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Figure 5: Topographic similarity in Game-1.

In Figure 5 we show the topographic similarity of all three data
representations in Game-1. Since for all data representations, we see
a positive value of 𝜌 , this implies that there is a direct correlation on
how the input features change the messages. Throughout the training,
the graph representation are found to be more compositional (high
topographic similarity) than bag-of-words and sequences. This aligns
perfectly with the hypothesis that is found in previous literature that
graph neural networks tend to capture compositional properties
better than seq2seq networks [21].
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Figure 6: Out-of-domain generalization in Game-2. We show
two plots with varying complexity of the game. The left plot is
for a comparatively easier task with 9 distractors while the right
one is on a harder version with 19 distractors. Both versions use
25 nodes, a vocabulary size of 25 and a message length of 25. In-
creasing the complexity of the game led the bag-of-words model
to overfit to the training data since it performs the worst on gen-
eralization. We hypothesize that it created a partial hash-map
for the set of inputs and failed to completely learn the combina-
torial properties of the input space.

Out-of-domain generalization. We measure compositionality through
out-of-domain generalization accuracy in Game-2. In this setup, the
speaker observes a target entity which it has never observed before
(i.e. an unseen combination of properties) and it is tasked to produce
a unique code to be sent to the listener. If the agents learned to speak
and understand compositional codes, then the speaker will utter a
message which will consist of new symbols that are never seen by
the listener during training. The listener then should be able to iden-
tify the target when mixed in a pool with other unseen distractors
that are also composed of new properties. The only way the speaker

can solve this task is if the speaker learned to disentangle the indi-
vidual properties in the input and to encode it using a sequence of
words with non-overlapping vocabulary. The job of the listener is
to associate meanings to a subset of these words and relate it to the
input properties.2

In Figure 6, we observe that graph neural networks perform the
best across all models, and the gap between the second best perform-
ing model (seq2seqs) increases even more when the game complexity
is increased. We attribute this to graph neural networks being able
to capture better compositional structure of the input rather than
learning a partial hash-map, which we hypothesize is what happens
in the case of bag-of-words model. We also show some qualitative
examples of the input data and messages transmitted by the speaker
in Table 2.

Input data BoW Seq Graph

A2 B4 C6 [1 4 4] [5 1 3] [7 1 4]
A2 B4 C5 [1 0 0] [8 3 2] [4 7 2]
A2 B2 C6 [6 4 1] [9 9 1] [9 4 1]
A5 B4 C6 [8 8 9] [3 5 2] [6 6 1]

Table 2: We show some qualitative samples from different mod-
els on Game-1. We vary one property while keeping the others
fixed to show the corresponding change in the message. We rep-
resent the input data as shown in Figure 2. The vocabulary size
is 10 with message of fixed length 3 and the perceptual dimen-
sions being [10, 6, 8]. We see that in graphs varying one property
changes only one symbol in the message thereby implying that
they learned the compositional structure of the input. Similar
behavior can be observed with bag-of-words model except the
last one. The sequences perform comparatively worse than the
other two often changing the whole message instead of just one
symbol.

3.3 Graph Neural Networks in Emergent
Communication

In both games, the two metrics used (topographic similarity and
out-of-domain generalization) lead us to infer that graph representa-
tion performs better than the other two data representations in terms
of learning systematic generalization and compositionality. To our
knowledge, this is the first work which uses the benefits of graph
neural networks in the domain of emergent communication. Thus we
perform further analysis on using various types of graph encoders
and pooling methods, and investigate the effect they have on learned
communication protocols.

3.3.1 Ablation studies on Graph Neural Networks.
Pooling methods: In order to compute the graph embedding, we

experimented with the standard graph pooling methods: mean, sum
and max functions. We found that the sum pooling gave a significant
boost in performance, and thus we use sum pooling throughout the
experiments presented in this paper.

2Note that the listener also has to learn to disentangle the input properties. We tried
sharing the same encoder for both speaker and the listener but it performed slightly
worse than having separate modules.
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Figure 7: Robustness of the communication protocol. We show that for a symbol other than the one sent by the speaker (position of
the black bar), the listener does not correctly identify the target. For more details, refer to §3.3. The above chart is for Game-1 with
perceptual dimensions [10, 6, 8] with a message length of size 3 and a vocabulary size of 10. We enumerate over the first property with
vocabulary size 10 while keeping the other symbols in the message fixed.

Encoder networks: We also experimented with two popular graph
neural networks to compute the graph encoding, namely Graph-
Conv and SAGEConv. We did not find a significant difference in
performance between the two models.

Aggregator types: Another axis of variation is the aggregator type
used in GraphSAGE and we found that the effect of all types- ‘mean’,
‘pool’ and ‘gcn’ is the same across both games.

3.3.2 Robustness of communication protocols.
In Figure 7, we show the results of a robustness analysis of the

communication protocols learned by the speaker/listener using the
graph neural network approach. The purpose of this analysis is to
see if the listener is able to correctly identify the target even if the
message changed. If the agents learned to distinguish the target
among distractors through communication, the listener should not be
able to recognize the target if it has not received the target encoding
from the speaker. For a given message of length 𝑙 = 3, we fixed 𝑙 − 1
i.e. 2 words at some arbitrary positions in the message and varied
the third word over the whole vocabulary. For each word 𝑖 in the
vocabulary, we collected the set of test samples 𝐷𝑖 where the speaker
used the corresponding word 𝑖 along with the other fixed symbols
to represent the target graph, and the listener was able to correctly
point to the target graph. Each subplot in Figure 7 represents the
distribution of 𝐷𝑖 over the whole vocabulary size |𝑉 | = 10. We
observe that in all cases the symbol sent by the speaker (referred
by the title in each subplot and the position of the black bar) is the
one that allows the listener to correctly identify the target graph. We
performed this analysis by randomizing the fixed positions over the
whole message length. It shows that the listener actually cooperates
with the speaker to build robust codes and uses the unique message
to identify the target among distractors.

We also analyze the behavior of the listener when presented to the
shuffled set of graphs. In each experiment, the position of the target
was permuted across all of the possible |𝐾 | + 1 positions, where 𝐾
is the number of distractors. We observe that the listener was still
able to correctly identify the target based on the message sent from
the speaker. We thus posit that the agents learned an order invariant
representation of the graphs and not some positional information
about the ordering of the graphs in the distractors set.

4 CONCLUSION AND FUTURE WORK
In this paper, we compared the various types of data represen-

tations inducing different levels of structural bias through the lens
of emergent communication, and proposed a novel graph referen-
tial game. We showed that for two structured referential games,
using a graph representation performs better than sequences and
bag-of-words in terms of compositionality measured by topographic
similarity and out-of-domain generalization. We showed that agents
parameterized by simple graph neural networks also generalized
more effectively to unseen combinations of familiar concepts and
types. We also performed ablation studies on different variants of
graph neural networks and showed robustness of the communication
channel with respect to the position of the target among distractors.
We found that the agents made an efficient use of the vocabulary,
learned an order-invariant representation of the target graph, and
solved the games with varying number of distractors through com-
munication and cooperation. With the recent advancements of using
graph based neural networks in natural language processing [25], a
future direction could be to use these networks to generate sentences
close to natural language [16]. Similarly to the state-of-the-art trans-
formers, one can replace the separate sequence decoder with a fully
connected graph network and might observe better performance.
Another possible direction can be to use a deeper hierarchy of prop-
erties in the graph representations. We believe that more complex
and realistic graphs would yield a higher degree of compositional
understanding.
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