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ABSTRACT
In many multi-agent interactions in the real world, agents receive
payoffs over multiple distinct criteria; i.e. the payoffs are multi-
objective in nature. However, the same multi-objective payoff vec-
tor may lead to different utilities for each participant. Therefore,
it is essential for an agent to learn about the behaviour of other
agents in the system. In this work, we present the first study of
the effects of such opponent modelling on multi-objective multi-
agent interactions with non-linear utilities. Specifically, we consider
multi-objective normal form games with non-linear utility func-
tions under the scalarised expected returns optimisation criterion.
We contribute a novel actor-critic formulation to allow reinforce-
ment learning of mixed strategies in this setting, along with an
extension that incorporates opponent policy reconstruction using
conditional action frequencies. Empirical results in five different
MONFGs demonstrate that opponent modelling can drastically alter
the learning dynamics in this setting. When equilibria are present
opponent modelling can confer significant benefits on agents that
implement it. However, when there are no Nash equilibria, oppo-
nent modelling can have adverse effects on utility, and has a neutral
effect at best (after extensive hyper-parameter optimisation).
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1 INTRODUCTION
Game theory classically studies multi-agent decision making with
one-dimensional payoffs [15]. Many real-life decision problems
however, are much more intricate. For example, while hammering
out a contract for building a new piece of software, the different
agents may care about price, delivery time, functionality, and so on.
In other words, many multi-agent decision problems are inherently
multi-objective [21].

In such multi-objective settings, the utility derived from the pay-
offs may differ from agent to agent. For example, imagine a multi-
player online game where a team of players does a quest together.
The quest will lead to the same expected amount of experience

points, loot and currency for each player in the team. However,
depending on their level, class, and playing style, different agents
may care about these objectives differently, leading to different
individual utilities. While the expected payoffs may be common
knowledge, the utility each agent would derive from these payoffs
may be private information. Furthermore, it may even be non-trivial
for the individual agents to quantify these utilities for themselves
[27]. In such cases, it is critical to study the emergent behaviour
after multiple interactions as the agents learn more about each
other. In other words, it is key to look at it from a reinforcement
learning perspective.

An elegant model to study agent interaction in multi-objective
settings is the multi-objective normal form game (MONFG) [2, 22].
To date, most papers studying MONFGs have considered different –
specifically multi-objective – equilibria, which are often agnostic
about the utility functions of the individual agents [3, 25]. Fur-
thermore, most research implicitly assumes that the agents are
interested in the expected utility of the payoff vector of a single
play. This is called the expected scalarised returns (ESR) optimality
criterion [17]. However, in many games, especially when the game
is played multiple times, agents may instead be interested in the
utility of the expected payoff (over multiple plays), which is called
the scalarised expected returns (SER) optimality criterion. As we
will study repeated interaction and long-term rewards, befitting
the reinforcement learning setting, we are interested in the SER
criterion. Recent work by Rădulescu et al. [20] demonstrated that
the difference between ESR and SER in MONFGs can drastically
alter the equilibria, and that, under SER, Nash equilibria (NE) need
not exist at all.

The payoffs in MONFGs are common knowledge, but the utilities
the agents derive from these are not. It therefore is important to
learn about the opponents, i.e., other agents, through interaction. In
this paper, we investigate whether opponent modelling (OM) can be
of benefit in reinforcement learning for multi-objective multi-agent
decision making problems under SER. Although opponent mod-
elling techniques have a long history of use within the MAS com-
munity [1], to date their potential applications to multi-objective
multi-agent systems (MOMAS) have not been comprehensively
explored.



The contributions of this paper are:
(1) Using an actor-critic framework, we develop the first rein-

forcement learning methods that can learn stochastic best
response strategies for MONFGs under SER.

(2) We contribute a novel algorithm developed specifically for
opponent modelling in MONFGs under SER with non-linear
utility functions.

(3) We provide the first empirical evidence that opponent mod-
elling can confer significant advantages in MONFGs under
SER with non-linear utility functions when Nash equilibria
are present. When both agents implement opponent mod-
elling, opponent modelling can increase the probability of
converging to (better) Nash equilibria.

(4) When NE are present, we demonstrate that when only a
single agent implements opponent modelling, there is an
increased likelihood of converging to the best Nash equilib-
rium for that agent.

(5) Our experimental results show that when no NE are present,
opponent modelling can in fact have adverse effects on the
utility of agents that implement it. This is the first time such
a phenomenon has been noticed. We note that the adverse
effects can be mitigated by careful hyperparameter tuning,
after which opponent modelling will have a neutral effect
on utility at best.

We note that contribution 4 and 5 are surprising, but consistent
with the single-objective literature. In the single-objective literature,
opponent modelling has been shown to usually improve utility [1],
which is not the case under SER without NE. However, in the
equivalent single objective settings NE always exist [14], so the
situation that there are no NE never occurs.

The next section of the paper introduces the necessary back-
ground material. In Section 3 we introduce our novel actor-critic
algorithm along with an extension for opponent modelling. Section
4 presents an experimental evaluation of our proposed algorithms
in several different MONFGs. Section 5 surveys related prior work
on opponent modelling. Finally, Section 6 concludes the paper with
some closing remarks and a discussion of promising directions for
future research.

2 BACKGROUND
In this section, we discuss the necessary background material on
MONFGs, multi-objective optimisation criteria, utility functions,
solution concepts, opponent modelling and actor-critic algorithms.

2.1 Multi-Objective Normal Form Games
We are interested in a setting where multiple agents, each having
different preferences with respect to the objectives, are interacting
and learning in order to optimise the utility they receive. We use
the framework of multi-objective normal form games (MONFG) to
model the agents’ interactions.

Definition 2.1 (Multi-objective normal-form game). An 𝑛-person
finite multi-objective normal-form game𝐺 is a tuple (𝑁,A, p), with
𝑛 ≥ 2 and 𝑑 ≥ 2 objectives, where:

• 𝑁 = {1, . . . , 𝑛} is a finite set of agents.

• A = 𝐴1× · · · ×𝐴𝑛 , where𝐴𝑖 is the finite action set of agent 𝑖
(i.e., the pure strategies of 𝑖). An action (pure strategy) profile
is a vector a = (𝑎1, . . . , 𝑎𝑛) ∈ A.
• p = (p1, . . . , pn), where pi : A → R𝑑 is the vectorial payoff
of agent 𝑖 , given an action profile.

We adopt a utility-based perspective [18], by assuming that for
each agent there exists a utility function that maps its vectorial
payoffs to a scalar utility.

2.1.1 Utility Functions. In multi-objective normal-form games,
the term payoff is used to denote the numeric vector received by
agents after each interaction. As mentioned above, we also assume
each agent 𝑖 has a utility function that maps this payoff to a scalar
value: 𝑢𝑖 : R𝑑 → R, where 𝑑 is the number of objectives.

In general, we only require that the utility functions 𝑢𝑖 belong to
the class of monotonically increasing functions, i.e., given two joint
strategies 𝝅 and 𝝅 ′: (∀𝑜, 𝑝𝝅

𝑖,𝑜
≥ 𝑝𝝅

′

𝑖,𝑜
) ⇒ 𝑢𝑖 (p𝝅𝑖 ) ≥ 𝑢𝑖 (p𝝅

′

𝑖
), where

𝑝𝝅
𝑖,𝑜

is the payoff in objective 𝑜 for agent 𝑖 when the agents follow
a joint strategy 𝝅 . In other words, if the value of one strategy is
superior in at least one objective, we expect to maintain the same
ranking after applying the utility function.

We are interested in the setting of repeated interactions, while
going beyond the widely used class of linear utility functions, i.e.,

𝑢𝑖 (p) =
𝑑∑

𝑜=1
𝑤𝑖,𝑜 ·𝑝𝑖,𝑜 , and consideringmore general function classes.

Furthermore, while the payoffs in MONFGs are known to the play-
ers, the utility that each agent derives from it remains hidden from
the other agents. Learning about other agents through repeated
interactions then becomes an essential component for allowing one
to reach favourable outcomes.

2.1.2 Optimisation Criteria. InMONFGs each agent aims to opti-
mise its utility. The utility of an agent can be derived by applying its
utility function to its received payoffs. Contrary to single-objective
games however, it matters when the utility function is applied. We
can distinguish between two options [18, 19]: i) first computing the
expectation over the payoffs obtained according to a strategy 𝝅 and
only after applying the utility function is denoted as the scalarised
expected returns (SER) approach:

𝑝𝑢,𝑖 = 𝑢 (E[p𝝅𝑖 ]); (1)

ii) first applying the utility function before computing the expecta-
tion leads to the expected scalarised returns (ESR) approach:

𝑝𝑢,𝑖 = E[𝑢 (p𝝅𝑖 )] . (2)

The distinction between these options only appears when con-
sidering non-linear utility functions [19]. The choice between these
criteria depends on what an agent is interested in optimising. ESR
should be chosen when what matters is the utility of the payoff
vector after every single interaction. Most previous research on
MONFGs implicitly assumes ESR [4, 13]. Contrary, SER is more
natural in the case of repeated interactions, as in SER the average
payoff over multiple interactions determines the utility. SER is the
most common choice in the reinforcement learning (RL) literature
[18], and has recently been analysed in MONFGs [20, 21]. As we
are interested in learning over repeated interactions, we focus on
SER.

2



2.1.3 Solution concepts for MONFGs. In a MONFG under SER, a
Nash equilibrium (NE) [14] is defined as a set of strategies for each
agent, such that no agent can increase her SER by deviating from
the equilibrium joint strategy [20].

Definition 2.2 (Nash equilibrium in aMONFG under SER). Amixed
strategy profile 𝜋𝑁𝐸 is a Nash equilibrium in a MONFG under SER
if for all 𝑖 ∈ {1, ..., 𝑁 } and all 𝜋𝑖 ∈ Π𝑖 , with Π𝑖 the set of mixed
strategies for agent 𝑖:

𝑢𝑖
[
E p𝑖 (𝜋𝑁𝐸

𝑖 , 𝜋𝑁𝐸
−𝑖 )

]
≥ 𝑢𝑖

[
E p𝑖 (𝜋𝑖 , 𝜋𝑁𝐸

−𝑖 )
]

(3)

i.e. 𝜋𝑁𝐸 is a Nash equilibrium under SER if no agent can increase
the utility of her expected payoffs by deviating unilaterally from
𝜋𝑁𝐸 .

Recent work [20] has demonstrated that NE need not exist in
MONFGs under SER with non-linear utility functions; whether
any NE exist in this setting depends on the payoff scheme of the
MONFG and the utility functions of the agents. Given the lack of
theoretical results for the behaviour or learning dynamics for these
cases, it is interesting to experimentally determine and characterise
the output in these settings.

2.2 Opponent Modelling
As the agents do not know each other’s utility functions, it becomes
increasingly important to explicitly learn about the other agents.
For such opponent modelling, we consider here the approach of
policy reconstruction using conditional action frequencies [1]. This
implies that an agent will maintain a set of beliefs regarding the
strategy of the opponent. Similar to the idea introduced for Op-
ponent Modelling Q-learning [24], joint-action learners [8] and
fictitious play [9], we consider empirical distributions derived from
observing the actions of the opponent over a window of size𝑤 .

Let 𝜅𝑖𝑡 (𝑎) be a timestep dependent counter for {𝑡 −𝑤 + 1, . . . , 𝑡}
kept by agent 𝑖 for every action 𝑎 ∈ 𝐴−𝑖 taken by the other agent.
The probability that agent 𝑖 assigns to agent−𝑖 playing 𝑎 at timestep
𝑡 is defined as:

𝑃𝑟 𝑖𝑡 (𝑎) =
𝜅𝑖𝑡 (𝑎)∑

𝑎′∈𝐴−𝑖 𝜅
𝑖
𝑡 (𝑎′)

(4)

These probabilities can then be used by agent 𝑖 to represent
the policy 𝜋−𝑖 of her opponent and to derive the valuation of her
actions by marginalising out the opponent’s strategy.

2.3 Policy Gradient and Actor-Critic
Policy gradient [23, 26] is a family of reinforcement learning algo-
rithms that directly learns a policy 𝜋𝜽 parameterised by 𝜽 instead of
indirectly inferring a policy based on value functions in value-based
methods. After defining an objective function 𝐽 (𝜽 ), policy gradient
methods calculate the gradients of the objective w.r.t to 𝜽 using
the agent’s actual experiences (𝑠𝑡 , 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ;𝜽𝑡 ) , 𝑟𝑡 )𝑇𝑡=0 from in-
teracting with the environment and update the parameters 𝜽 to
improve the return from the objective function. Although there are
many different ways to approximate the true gradients, all policy
gradient methods share the same form of updates:

𝜽𝑡+1 ← 𝜽𝑡 + 𝛼∇𝐽 (𝜽𝑡 ) (5)

In addition to policy gradient methods, there is another powerful
class of learning methods, called actor-critic methods, which learn
a policy, referred to as the actor, and a value function, referred
to as the critic [23]. Compared to vanilla policy gradient methods
that only use obtained rewards to compute gradients, the critic
can usually reduces the variance in gradients and achieves a more
stable policy update. In this way, actor-critic methods can be seen
as combining both the policy- and value-based methods.

3 OPPONENT MODELLING IN MONFGS
In this paper, we investigate the effects of opponent modelling in
the setting of MONFGs under SER with non-linear utility functions.
We focus on understanding if opponent modelling can speed up
learning or confer a significant advantage for agents who imple-
ment it in this setting. Furthermore, when considering MONFGs
under SER, we also investigate whether there is a difference in
the observed effect of opponent modelling in games with Nash
equilibria, compared to games without Nash equilibria.

To investigate the effects of opponent modelling in MONFGs
under SER, we design an actor-critic algorithm specially adapted for
this framework to optimise SER. There are key benefits to choosing
an actor-critic method. Compared to vanilla policy-based methods,
actor-critic methods use a learned value function to reduce variance
and ensure a stable policy update. And, more importantly, compared
to value-based methods actor-critic methods allow the agents to
learn an explicitly stochastic policy. Like in policy-based methods,
this enables effective exploration and exploitation strategies that are
signigicantly better than the often-used hard-coded epsilon-greedy
exploration in value-based methods. More importantly however,
stochastic policies are essential for the SER optimality criterion,
as even if the opponents policy is fixed, the best response may
still necessarily be stochastic. Therefore, enabling such explicitly
stochastic policies is a significant improvement over recent work
on reinforcement learning in MONFGs [20], which used Q-learning
with 𝜖-greedy to learn best responses based on pure strategies only.

Given an agent’s own utility function, when considering max-
imising its SER, a natural representation of the expected returns is
the expectation of action values over the agent’s action distribution,
i.e, its stochastic policy 𝜋𝜽 . Let us represent the multi-objective
action value vector by 𝑸 (𝑎) and the stochastic policy by 𝜋 (𝑎 |𝜽 )
parameterized by 𝜽 . Then, for this agent, we have its SER objective
defined as:

𝐽 (𝜽 ) = 𝑢

( ∑
𝑎∈A

𝜋 (𝑎 |𝜽 )𝑸 (𝑎)
)

(6)

where 𝑢 is the non-linear utility function, 𝑎 ∈ A is an action
available to the agent, 𝜋 the policy of the agent parameterised by
𝜽 and 𝑸 (𝑎) ∈ R𝑑 is the multi-objective action value vector that
can be learned by different means (e.g. Eqn 7). More specifically,∑
𝑎 𝜋 (𝑎 |𝜽 )𝑸 (𝑎) is the expected multi-objective return vector; by

applying the utility function and optimising this quantity, the agent
is able to learn a best response mixed strategy under SER.

Next, we propose a base algorithm without opponent modelling
as well as an algorithm with opponent modelling within the actor-
critic framework.
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3.1 Actor-Critic for MONFGS
To optimise SER, we have to take the gradients of 𝐽 (𝜽 ) w.r.t 𝜽 . We
divide this into 2 iterative steps. Note that in the SER objective, the
action values 𝑸 (𝑎) are initialised arbitrarily in the beginning and
need to be learned. So the first step is to learn the multi-objective
action value vector 𝑸 (𝑎). After an action 𝑎 is chosen using its own
policy 𝜋 (𝑎 |𝜽 ), the agent observes a vectorial payoff 𝒑 and we use a
simple stateless Q-learning update rule (as per [20]) to learn 𝑸 (𝑎):

𝑸 (𝑎𝑡 ) ← 𝑸 (𝑎𝑡 ) + 𝛼𝑄 [𝒑𝑡 − 𝑸 (𝑎𝑡 )] (7)

where 𝛼𝑄 is the learning rate for Q-learning. After the action values
have been updated, the objective 𝐽 can be calculated and analytically
derived and we perform the second step to update 𝜽 in the direction
of maximising SER:

𝜽𝒕+1 ← 𝜽𝒕 + 𝛼𝜃∇𝐽 (𝜽𝑡 ) (8)

where 𝛼𝜃 is the learning rate for policy update.
In this way, as we iterate the above 2 steps, both the action values

𝑸 (𝑎) and policy 𝜋𝜽 are learned.

3.2 Actor-Critic with Opponent Modelling
When considering opponent modelling, an intuitive approach is
to model the opponent’s policy 𝜋 ′ directly; the simplest way is
to represent the opponent’s policy as an empirical distribution
of action frequencies 𝜋 ′(𝑎′). By using this modelling approach,
the agent is able to aggregate information about the opponent’s
decision patterns and hence use it to improve its own policy.

In order to combine opponent modelling with our actor-critic
algorithm, some extensions have to be made. Firstly, instead of
learning 𝑸 (𝑎), a new joint action value 𝑸 (𝑎, 𝑎′) will be learned to
estimate the expected vectorial payoff for each possible joint action.
After each episode, combining the updated 𝑸 (𝑎, 𝑎′) and estimate
of the opponent’s policy 𝜋 ′, the agent will be able to evaluate
the expected utility of its next action. However, since stochastic
policies are used by both the agent and its opponent, the uncertainty
from both strategies should be taken into account. As a result, we
can naturally extend the SER objective by marginalising over the
opponent’s actions 𝑎′, with the new SER objective 𝐽 (𝜽 ) defined
as 𝐽 (𝜽 ) = 𝑢

(
E𝜋 (𝑎 |𝜃 )E𝜋 (𝑎′) [𝑄 (𝑎, 𝑎′)]

)
. By maximising this SER

objective, the agent is able to average over all the uncertainty to
compute the best mixed strategy in terms of scalarised expected
return. More specifically, the SER objective can be expressed as:

𝐽 (𝜽 ) = 𝑢
©­«
∑
𝑎𝑡 ∈𝐴

𝜋 (𝑎𝑡 |𝜽 )
∑

𝑎′𝑡 ∈𝐴′
𝜋 ′

(
𝑎′𝑡

)
𝑸

(
𝑎𝑡 , 𝑎

′
𝑡

)ª®¬ (9)

We now introduce the algorithm with opponent modelling based
on the vanilla actor-critic algorithm that we developed in the previ-
ous section in Algorithm 1.

4 EXPERIMENTS
To evaluate the impact of opponent modelling, we use multiple
2-player 2-objective MONFGs with different properties. In all these
MONFGs, we consider the utility functions as defined in [20]; the

Algorithm 1: Actor-Critic for MONFGS with OM
Input:MONFG 𝐺 , number of episodes𝑀 , learning rates

𝛼𝑸 , 𝛼𝜽 , window size𝑤 , opponent’s action history
buffer ℎ, utility function 𝑢 for each player.

Output: For each player: the policies 𝜋 (𝑎 |𝜽 ), the joint
Q-functions 𝑸 (𝑎, 𝑎′).

1 For each player, initialize 𝜽 as a zero-vector, initialize
softmax policy 𝜋 (𝑎 = 𝑎𝑖 |𝜽 ) = 𝑒𝜃𝑖∑ |𝐴𝑖 |

𝑗=1 𝑒
𝜃 𝑗

and initialize joint

Q-functions 𝑸 (𝑎, 𝑎′) as a zero-tensor.
2 for each episode t do
3 for each player i do
4 Play sampled action 𝑎 ∼ 𝜋 (𝑎 |𝜽 ) and observe

opponent’s action 𝑎′.
5 Observe multi-objective payoff 𝒑.
6 Append opponent’s last action 𝑎′ to the buffer ℎ.
7 Estimate opponent’s action distribution 𝜋 ′(𝑎′) from

buffer ℎ.
8 Update own joint Q-function:

𝑸 (𝑎, 𝑎′) ← 𝑸 (𝑎, 𝑎′) + 𝛼𝑄 [𝒑 − 𝑸 (𝑎, 𝑎′)].
9 Calculate own objective:

𝐽 (𝜽 ) = 𝑢 (∑𝑎∈𝐴 𝜋 (𝑎 |𝜽 )∑𝑎′∈A′ 𝜋
′(𝑎′)𝑸 (𝑎, 𝑎′)).

10 Update own policy parameters: 𝜽 ← 𝜽 + 𝛼𝜃∇𝐽 (𝜽 ).

𝐿 𝑀

𝐿 (4, 0) (3, 1)
𝑀 (3, 1) (2, 2)

Table 1: Game 1 - AMONFGwhich has one pure strategy NE
in (L,M) under SER, with expected payoffs of 10 and 3.

𝐿 𝑀

𝐿 (4, 1) (1, 2)
𝑀 (3, 1) (3, 2)

Table 2: Game 2 - A MONFG which has pure strategy NE
in (L,L) – payoffs (17, 4), and (M,M) – payoffs (13, 6), under
SER. Note that (L,L) offers the highest utility for the row
player, whereas (M,M) offers the highest utility for the col-
umn player.

row player’s utility function is:

𝑢1 ( [𝑝1, 𝑝2]) = 𝑝1 · 𝑝1 + 𝑝2 · 𝑝2, (10)

while the column player’s utility function is:

𝑢2 ( [𝑝1, 𝑝2]) = 𝑝1 · 𝑝2 . (11)

We first introduce Game 1 (Table 1) that has one NE in pure
strategies under SER: (L,M). Secondly, we create a MONFG with
multiple NE, referred to as Game 2 (Table 2). There are two equi-
libria in this case: (L,L) and (M,M). (L,L) offers the highest utility
for the row player, while (M,M) is the preferred outcome for the

4
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Figure 1: Results on Game 3. The left column shows the estimated SER for Agent 1 (top) and Agent 2 (bottom) under the 4
experiment settings. The middle and right columns show the empirical outcome distributions.

𝐿 𝑀 𝑅

𝐿 (4, 1) (1, 2) (2, 1)
𝑀 (3, 1) (3, 2) (1, 2)
𝑅 (1, 2) (2, 1) (1, 3)

Table 3: Game 3 - A MONFG which has pure strategy NE
in (L,L) – payoffs (17, 4), (M,M) – (13, 6), and (R,R) – (10,
3), under SER. Note that (L,L) and (M,M) Pareto-dominate
(R,R), and that (L,L) offers the highest utility for the row
player, whereas (M,M) offers the highest utility for the col-
umn player.

𝐿 𝑀

𝐿 (4, 0) (2, 2)
𝑀 (2, 2) (0, 4)

Table 4: Game 4 - There are no NE in this game under SER.

column player. This will allow us to focus closely on the competi-
tion between the agents for reaching their preferred equilibrium.
For the third MONFG with NE, we extend the previous game to
3-actions, in Game 3 (Table 3), having 3 pure Nash equilibria (i.e.,
(L,L), (M,M), (R,R)) under SER with the specified utility functions.
The (R,R) NE is Pareto-dominated by the other equilibria. Again,

𝐿 𝑀 𝑅

𝐿 (4, 0) (3, 1) (2, 2)
𝑀 (3, 1) (2, 2) (1, 3)
𝑅 (2, 2) (1, 3) (0, 4)

Table 5: Game 5 - The (Im)balancing act MONFG from Răd-
ulescu et al. [20]. There are no NE in this game under SER.

(L,L) is the best outcome for the row player in terms of utility, while
(M,M) is preferred by the column player.

We also conduct experiments using two MONFGs without any
NE under SER. We introduce Game 4 (Table 4), and we also use
the (Im)balancing Act MONFG, which we will refer to as Game 5
(Table 5, originally introduced in [20]). Both of these games exhibit
similar dynamics when the players use the utility functions in Eqns.
10 and 11. To get the highest utility, agent 1 (row) wishes to make
the objectives as unbalanced as possible, whereas agent 2 (column)
wishes to make the objectives as balanced as possible. Because of
the structure of the payoffs, it is never possible to reach a stable
equilibrium in pure or mixed strategies, as one or other of the agents
always has an incentive to deviate to its preferred pure strategy to
gain extra utility [20].

For each game, we consider four different settings:
(1) Setting 1: neither agent performs opponent modelling.
(2) Setting 2: both agents perform opponent modelling.
(3) Setting 3: only agent 1 performs opponent modelling.
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Figure 2: Results on Game 5. The left column shows the estimated SER for Agent 1 (top) and Agent 2 (bottom) under the 4
experiment settings. The middle and right columns show the empirical outcome distributions.
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Figure 3: Quality of the opponent models for Game 3 (left) and Game 5 (right).

(4) Setting 4: only agent 2 performs opponent modelling.

For each setting, agents interact for 3000 episodes, averaged over
100 trials. Furthermore, in this experiment, the gradient ∇𝜽 is com-
puted analytically w.r.t 𝐽 (𝜽 ). An agent’s strategy 𝜋 (𝑎 |𝜽 ) is repre-
sented using a simple softmax function:

𝜋 (𝑎 = 𝑎𝑖 |𝜽 ) =
𝑒𝜃𝑖∑ |𝐴𝑖 |
𝑗=1 𝑒𝜃 𝑗

(12)

The actor learning rate for the presented experimental results is
𝛼𝜃 = 0.05, while ℎ, the opponent modelling window size, is set
to 100. For the setting without opponent modelling we used a
critic learning rate 𝛼𝑄 = 0.05. For the Opponent Modelling Actor-
Critic approach, because the agents are learning the Q-function for
the join-action space in a deterministic setting, we used 𝛼𝑄 = 1.
However, we note that we carried out an extensive analysis with
respect to all these parameters and we present all the results and
observations below.
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Note that with any kind of opponent modelling, the agent is
generally expected to make better decisions than without opponent
modelling because more information is used. However, the perfor-
mance depends on the quality of the model, as making decisions
based on wrong or obsolete information can lead to detrimental
results. To quantify which of the four settings leads to a better
performance in the framework of MONFGs under SER, we con-
sider three representative criteria, namely the estimated SER, the
empirical distribution over the possible outcomes of the game for
the last 500 rounds, and a measure for assessing the quality of the
opponent model (i.e., the maximum absolute value of the difference
between the predicted and the actual policy). The first criterion is
easy to understand from an optimisation perspective; since we are
trying to maximise SER, the setting with a higher SER is deemed
better. The second criterion could be understood from a game the-
ory perspective, where a setting is evaluated by whether it increases
the frequency of favourable outcomes for an agent (e.g., reaching
preferred Nash equilibria under SER in Game 3). Finally, with our
last criterion we try to capture the difficulty of estimating the op-
ponent’s policy (e.g., an agent’s policy might never converge and
always cycle between actions) and understand whether agents are
basing their decisions on accurate information about the opponent’s
strategy.

The reported SER of an agent’s mixed strategy is calculated for
each trial of 3000 episodes (where an episode consists of a single
interaction), on a rolling basis, using a window of 100. The payoffs
𝒑 the agent received are combined and averaged to obtain the
expected return vector. Then the corresponding utility function
𝑢 is applied on top of this expected return in order to obtain an
empirical estimate of the SER.

We present here only the experimental results figures for Game 3
and Game 5. However, we note that we observe the same trend for
the rest of our results, depending on whether equilibria are present
or not in the considered MONFGs.

4.1 MONFGs with Nash Equilibria
Games 1 and 2. For these settings the results for the SER are

highly similar to Game 3. Regarding the empirical outcome dis-
tribution for Game 1, the agents manage to reach the NE with
higher probability (i.e., ≈ 99%) when both agents are using oppo-
nent modelling (OM), compared to the no OM setting (i.e., ≈ 81%).
For Game 2 when only agent 1 is performing the OM, the proba-
bility of converging to the (L,L) equilibrium is ≈ 79%, while when
only agent 2 is performing the OM the probability of converging to
the (M,M) equilibrium is ≈ 77%. These results show that using OM
can increase the probability of converging to an agent’s preferred
equilibrium point (when NEs exist).

Game 3. Figure 1 shows the empirical SER and empirical out-
come distributions for Game 3. The left columns show both agents’
estimated SER for the 4 experimental settings, where the mean and
1 standard deviation confidence regions are shown over 100 statis-
tical trials. We can already notice here that the single-sided use of
OM does confer each agent with an advantage, in terms of obtained
payoff under SER. Analysing further the results, the middle and
right columns show the empirical outcome frequencies averaged
over 100 trials for the 4 experimental settings. Without OM, we

observe that (M,M) is the most common outcome (≈ 65%) and that
(L,L) is the next most common outcome (≈ 26%). When only agent
1 implements OM, the probability of reaching her preferred out-
come (L,L) increases (≈ 71%). When only agent 2 implements OM,
the probability of her preferred outcome (M,M) increases (≈ 74%).
When both agents implement OM, agent 1 gains an advantage as
the probability of reaching its preferred outcome increases (≈ 56%
vs. ≈ 26% without OM). However, the combined probability of
reaching one of the NE actually decreases (≈ 91% without OM vs.
≈ 85% with OM). This somewhat surprising result can be explained
by considering the prediction quality plot in Figure 3; we observe
that agent 1 consistently has difficulty in computing an accurate
estimate of the strategy of agent 2. This highlights the fact that
while policy reconstruction using conditional action frequencies
is generally useful to agents that implement it in MONFGs with
NE under SER, it may actually increase the risk of miscoordination
between the agents if the opponent policy estimates are inaccurate.

4.2 MONFGs without Nash Equilibria
Game 4. For this setting opponent modelling did not improve

the SER or learning speed for agents. On the contrary, in most set-
tings, the agent performing OM seemed to be unable to accurately
capture information regarding the opponent’s strategy, and thus
made decisions on the basis of incorrect or outdated information.
These outcomes were obtained particularly when setting 𝛼𝑄 for
the OM Actor-Critic approach to a lower value (e.g., 0.05). At best,
we found (after extensive hyperparameter optimisation) that OM
can have a neutral contribution to the obtained SER, similar to the
results presented for Game 5, and agents are converging to either
(L,M) or (M,L) with almost equal probability, whether OM is used
or not.

Game 5. From the left column of Figure 2, we can see that the
estimated SER for both agent 1 and agent 2 is very similar under all
four experimental settings. From the middle and right columns on
Figure 2, we observe that the empirical distributions of outcomes
share similar structures, i.e., most of the probability density is con-
centrated in outcomes (R,L) and (L,R). In this game, agent 1 wants
the objectives to be as unbalanced as possible, whereas agent 2
wants the objectives to be as balanced as possible. Implementing
OM does not confer a significant advantage in terms of outcomes,
especially for agent 1 who could gain a large amount of additional
utility by increasing the frequency of the unbalanced outcomes
(L,L) and (R,R). As with Game 4 above, using a lower value of 𝛼𝑄
can cause OM to decrease the obtained utility for both agents; OM
has at best a neutral effect in settings with no NE. This is likely
because the opponent model based on action history is always inac-
curate due to the opponent rapidly changing its policy, as no stable
equilibrium point can be reached when both agents are performing
policy updates after each episode.

5 RELATEDWORK
Here we present a brief overview of prior work on MONFGs and
opponent modelling, with a specific focus on works which are
closely related to the contributions of this paper. A comprehensive
survey of opponent modelling techniques is presented by Albrecht
and Stone [1].
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Since their introduction in [2], MONFGs have mostly been con-
sidered under linear utility functions or implicitly assuming the
ESR criterion [3, 4, 13]. Rădulescu et al. [20] revisit MONFGs and
explicitly distinguish between ESR and SER, under non-linear util-
ity functions. They demonstrate the effect of using different criteria
on the set of Nash and correlated equilibria. We note, however,
that their experimental framework only incorporates a simplistic
Q-learning approach, using 𝜖-greedy as an action selection mecha-
nism, thus restricting their agents to only learning deterministic
strategies.

A straightforward method for opponent modelling in reinforce-
ment learning is building a model of the other agents’ policy. Op-
ponent Modelling Q-learning [24] extends Q-learning in a simi-
lar manner to our approach for extending the critic: it calculates
the probability distribution of the opponent actions from the ob-
served behaviour, and then derives the best action for the agent
by marginalising out the opponent’s actions from the state – joint-
action Q-table.

Opponent modelling has also been incorporated in RL methods
based on neural function approximators, by augmenting the model
with a module that is able to predict the action of the other agent
[11, 12]. Finally, goal prediction is another approach for opponent
modelling, presented in Self Other-Modeling [16], where the agent
uses his own policy in order to learn to predict the goal of the other
agent.

In multi-objective settings, another choice for modelling other
agents is to build a model of their utility functions. However, this
task is far from trivial, and an important idea is to use, anytime
possible, knowledge regarding the structure of the utility space.
For example, Chajewska and Koller [5] build a probabilistic model
for utilities elicited from a population of users and show how one
can find a factorisation of the utility function. More recently, one
can notice the use of Bayesian frameworks in the form of Gaussian
Processes to model utility functions [7, 10, 27]. Using an active
learning approach, one can also intertwine the decision making
process (based on partial utility information), with a querying pro-
cess in order to elicit additional utility information [6, 27], however
revealing information regarding one’s preferences will not always
be in the best interest of agents, especially in competitive settings.
Hence, the agent would need to extract preference information
from interactions, which is far from trivial.

6 CONCLUSION AND FUTUREWORK
In this work, we presented the first study on the effects of opponent
modelling in multi-objective multi-agent settings under the SER
optimisation criterion. In contrast to much prior work on opponent
modelling inmulti-criteria problems, we considered opponents with
non-linear utility functions. We adopted the MONFG model for our
experimental evaluations of the effects of opponent modelling un-
der SER with non-linear utility functions. A novel formulation of
actor-critic for this setting was introduced, along with an extension
that incorporates opponent modelling via policy reconstruction
using conditional action frequencies. Empirical results in five differ-
ent MONFGS (three with Nash equilibria, and two without under
the SER criterion) demonstrated that opponent modelling can sig-
nificantly alter the learning dynamics of a MONFG. In cases where

NE are present, opponent modelling can confer significant benefits
on agents that implement it. However, when there are no NE, we
observe that an agent that implements opponent modelling, while
its opponent does not, can experience adverse effects on its util-
ity. These adverse effects could be (mostly) mitigated after careful
hyper-parameter optimisation of the learning algorithm, but did
not contribute to the utility of the agent implementing the oppo-
nent modelling. This is highly surprising, and does not occur in
the single-objective setting – where there are always NE in mixed
strategies.

This study has a number of limitations, leaving much scope for
future research to build upon the present work. As we adopted the
MONFG model, our analysis considered stateless decision making
problems only; therefore this line of work should be extended to se-
quential settings such as multi-objective stochastic games (MOSGs)
[21]. Although estimating the opponent’s strategy using empirical
action frequencies in MOMAS provided promising initial results,
there is scope to develop more complex opponent modelling tech-
niques, such as estimating the opponent’s utility function directly
from observed behaviour. Provided that the opponent’s preferences
are fixed, we aim to learn sufficiently accurate utility-based oppo-
nent models that are less likely to suffer from the effects of outdated
information that we observed with policy reconstruction (e.g. in
Games 4 and 5). Gaussian processes are a promising candidate
for such utility function estimations; e.g. recent work has adopted
Gaussian processes to estimate non-linear utility functions in single
agent decision support settings [27].

Furthermore, our experimental evaluationswere limited to games
with two agents only, so there is much work to be done on oppo-
nent modelling in larger MOMAS. In many real world settings (e.g.
online games such as MMORPGs, or political negotiations between
multiple states), the utility functions of agents in the environment
often have varying degrees of alignment to one another. Therefore
an agent that can effectively model opponent utility could make
predictions about the intentions (i.e. cooperative vs. competitive)
of other agents, based on the degree of alignment of an estimated
opponent utility function with her own private utility function.

As multi-objective multi-agent decision making is a relatively
under-explored area of MAS research, many significant and in-
teresting open questions remain within the field. The choice of
optimisation criterion (ESR versus SER) can have drastic effects
on the set of equilibria in MOMAS. We already made the highly
surprising observation that opponent modelling can have adverse
effects under SER, when there are no NE. We want to further in-
vestigate this phenomenon. Firstly, in games under SER without
NE, we aim to investigate whether explicitly modelling the (prop-
erties of) the utility function of the opponent can make opponent
modelling effective again. Larger MOMAS may contain agents that
choose different optimisation criteria; this could add further com-
plications when determining the conditions for a stable outcome to
be reached. While we have proposed several new MONFGs in this
paper, in future work it would be worthwhile to develop a larger
set of standardised benchmarks that could be used to evaluate the
performance of algorithms in a variety of multi-objective multi-
agent decision making settings, e.g., cooperative and competitive
games, negotiations, and sequential settings.
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