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ABSTRACT
The goal of multi-objective problems is to find solutions that bal-
ance different objectives. When solving multi-objective problems
using reinforcement learning linear scalarisation techniques are
generally used, however system expertise is required to optimise
the weights for linear scalarisation. Thresholded Lexicographic Or-
dering (TLO) is one technique that avoids the need for an expert to
specify weights; instead a system designer can directly specify a
preferred ordering over objectives, along with a desired threshold
value for each objective. In this paper we propose a novel algorithm
to dynamically set thresholds for use with TLO. We also present the
first evaluation of TLO in a complex multi-objective multi-agent
problem, the Dynamic Economic Emissions Dispatch domain. Our
empirical results demonstrate that TLO with our dynamic thresh-
olding algorithm achieves superior results when compared with a
hand-tuned linear scalarisation method from previously published
work.
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1 INTRODUCTION
The current reinforcement learning literature concentrates mainly
on problems with a single objective, while most real-world prob-
lems contain multiple objectives. For example in energy genera-
tion, engineers may want to minimise both the cost and emissions
produced by the energy generators. Therefore when applying rein-
forcement learning to real-world problems it is important to expand
reinforcement learning algorithms to include multiple objectives.
Multi-objective optimisation is the process of optimising multi-
ple objectives concurrently; these objectives are conflicting. Linear
scalarisation functions are widely used to transformmulti-objective
return vectors into a single scalar reward in reinforcement learn-
ing. Setting the required weights for linear scalarisation techniques
requires system expertise and is not an intuitive process, as a small
change in the weight space can lead to a large change in the out-
come during execution.

In this work we will show how linear scalarisation techniques
can be replaced with a non-linear action selection technique, known
as Thresholded Lexicographic Ordering (TLO) [4, 11] in multi-
objective multi-agent reinforcement learning (MOMARL) problems.
Thresholded Lexicographic Ordering reduces complexity in multi-
objective optimisation problems by removing the weight selection
process entirely, instead enabling a user to specify their preferences
for possible outcomes by setting a lexicographic order over objec-
tives, along with target thresholds for each objective. We introduce

a novel method for dynamically setting thresholds that can com-
pletely remove the requirement for previous system knowledge
when setting thresholds manually. We also provide the first experi-
mental evaluation of TLO in a multi-objective multi-agent setting,
the Dynamic Economic Emissions Dispatch problem. Our empirical
results explore the effect of objective ordering on system perfor-
mance, and demonstrate that our dynamic TLO method achieves
superior performance when compared to a previously published
expert-tuned linear scalarisation approach.

2 RELATEDWORK
2.1 Reinforcement Learning
Reinforcement learning (RL) is a machine learning pardigramwhere
autonomous agents learn how to complete a defined task through
experience. An agent receives a scalar reward from the environ-
ment for previously taken actions and its goal is to maximise its
own scalar reward. Markov Decision Processes are considered the
standard when defining problems for single-agent RL problems
[14]. A MDP consists of a set of states, a set of actions, a reward
function and a transition function, i.e. a tuple < S,A,T ,R >. The
reward function R defines a scalar reward, r given to an agent for
performing an action in a state. When an agent is in state s , select-
ing action a, the agent will transition to state s ′. The probability
of transition to state s ′, having taken action a while in state s is
denoted by T (s,a, s ′) and gives a reward r = R(s,a, s ′). An agent
acts in an environment based on its policy π . The goal of an MDP is
to find the best policy for an agent in an environment. In order for
an agent to learn an optimal policy, π∗, an agent must learn about
all states in a given environment. To find an optimal policy an agent
must find a balance between exploration (exploring unknown states
in an environment) and exploitation (exploiting what the agent has
already learned about the environment). One strategy that strikes
a balance between exploration and exploitation is the ϵ - greedy
algorithm.

RL can be classified into two paradigms: model-based (e.g Dyna,
Rmax) and model-free (e.g Q-learning, SARSA). Model-based ap-
proaches attempt to learn the transition function T . While, in con-
trast, model-free approaches do not require any knowledge of the
transition function T . Model-free RL provides agents with the ca-
pability of learning to act optimally in Markovian domains by ex-
periencing the consequences of actions without requiring agents
to build maps of the domains [13]. Therefore, model-free learners
sample the underlying MDP directly in the form of value function
estimates (Q-values). Each Q-value represents the expected reward
for each state-action pair. This aids the agent in selecting what
action to take when in a given state. The agent generally takes the



action with the highest Q-value out of the available actions when
acting greedily.

Q-learning [13] is a commonly used RL algorithm. Q-learning
is a model-free algorithm that has been shown to converge to the
optimum policy with probability 1 in discrete environments, given
sufficient experience of all state-action pair. Q-learning updates the
Q-values using the following rule:

Q(s,a) ← Q(s,a) + α[r + γ maxQ(s ′,a′) −Q(s,a)] (1)

where α is the learning rate and γ is the discount factor.

2.2 Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) is an expansion on
traditional single-agent RL, where multiple autonomous agents
learn in an environment. In MARL the single-agent MDP frame-
work becomes inadequate and therefore we must generalise the
MDP to Stochastic Games (SGs). A SG is defined as a tuple <
S,A1...n,T ,R1...n >, where n is the number of agents, S is the set
of states, Ai is the set of actions for agent i ,T is the transition func-
tion, and Ri is the reward for agent i . A SG can be thought of as an
extension to an MDP. An MDP is a SG where the number of agents
is equal to 1. The next state of the system depends on the joint ac-
tions of all the agents in the SG. SGs can be fully co-operative, fully
competitive or mixed. Multiple individual learners can be deployed
to learn a SG. In this case, multiple agents individually learn using
a single-agent RL algorithm (e.g Q-learning).

2.3 Multi-Objective Reinforcement Learning
A distinction between single-objective and multi-objective rein-
forcement learning is how the reward is structured. In single agent
reinforcement learning, the reward is a scalar. To expand reinforce-
ment learning to be used in the multi-objective domain we must
change the reward function, R, so that it returns vectorial rewards
rather than scalars. The reward function, R, for multi-objective
reinforcement learning therefore returns a vector r that has a value
component per objective.

2.4 Multi-Agent Credit Assignment Structures
How an agent learns to act in an environment is guided by its
reward signal. Agents in cooperative MAS can receive the same
reward or different rewards depending on the credit assignment
structure used.

Previous work by Yliniemi et al. [16] identified the importance
of using appropriate credit assignment structures in multi-objective
MARL problem domains. Experimental results presented by Ylin-
iemi et al. [16] demonstrated that difference rewards are a very
promising approach for learning good-joint policies inmulti-objective
MARL problems.

The global reward (G) provides feedback to the agents which
is based on the utility of the entire system. The global reward
encourages agents to act in a way that benefits the overall system.
But the contribution of each agent’s actions to the performance
of the system is not well defined (i.e. the global reward is “noisy”).
In a system where agents learn using the global reward all agents
receive the same reward. This can lead to agents receiving a positive

reward for actions that are not in the best interest of the system
and vice versa.

The difference reward (Di ) is a shaped reward signal that aims
to quantify each agent’s contribution to the system performance
[15]. D is calculated by subtracting the global performance for a
theoretical system without the contribution of agent i from the true
global performance. This can be defined as follows:

Di (z) = G(z) −G(z−i ) (2)

where G(z) is the global system utility, G(z−i ) is the global utility
for a theoretical system without the contribution of agent i , and
Di (z) is the difference reward given to agent i .

2.5 Thresholded Lexicographic Ordering
Thresholded Lexicographic Ordering (TLO), first introduced by
Gabor et al [4], allows an agent in a multi-objective environment
to select actions which prioritise objectives in lexicographic order,
subject to desired minimum thresholds for performance on each
objective.

Vamplew et al. [11], applied TLOwith Q-learning (TLQ-learning)
in a multi-objective single-agent environment. The experimental
results showed that TLQ-learning converged to a Pareto optimal
solution in fewer episodes when compared to scalarised Q-learning
in a multi-objective single-agent problem domain.

TLQ-learning utilises a different action selection algorithm com-
pared to traditional Q-learning. This is outlined in Algorithm 1:
• Let n denote the number of objectives, labeled from 1..n
• Let A denote the set of available actions
• Let Cj be the threshold value (minimum acceptable value)
for objective j , as defined by the constraint for that objective
(note: objective n will be unconstrained, hence Cn = +∞)

CQs ,a, j ←min(Qs ,a, j ,Cj ) (3)

In state s , the greedy action a′ is selected such that:

superior (CQs ,a′ ,CQs ,a, 1) == True ∀a ∈ A (4)

where superior(CQs ,a′ , CQs ,a, i) is recursively defined in Algo-
rithm 1 [11]:

Algorithm 1: TLQ-learning Action Selection
1 if CQs ,a′ ,i > CQs ,a,i then
2 return true;
3 end
4 if CQs ,a′ ,i = CQs ,a,i then
5 if i = n then
6 return true;
7 else
8 return superior(CQs ,a′ , CQs ,a, i + 1);
9 end

10 else
11 return false;
12 end
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2.6 Ordering of Objectives
Vamplew et al. [11] evaluated the effect of the ordering of optimi-
sation of objectives on system performance in single-agent MORL
domains. Ordering of objectives is subjective; usera may have a
preference for optimising objective1 first, while userb may have a
preference to optimise objective2.

In TLO the user must state their objective preferential order
before running a system, this is a limitation as when problems scale
to a large number of objectives, users might not be aware of their
exact preferences. Recently, it was demonstrated by Zintgraf et
al. [17] that it is possible to model expert users’ preferences over
objectives using a utility function; however this work required a
lengthy preference collection phase, and these preference-based
utility functions have not yet been evaluated empirically as scalari-
sation functions for reinforcement learning in MORL domains. Our
dynamic TLO method avoids the need for a lengthy preference col-
lection phase, asking a user to specify an ordering over objectives
only once before learning begins.

As previously mentioned, agents learning with Q-learning re-
ceive a scalar reward while agents learning using TLO receive a
vector based reward defined as follows:

R = [−o1,−o2, ...,−on ] (5)

where each component o represents the global reward for an objec-
tive and n is the number of objectives.

3 NOVEL TECHNIQUES FOR THRESHOLDED
LEXICOGRAPHIC ORDERING

One shortcoming in current MOMARL approaches is the lack of a
method to specify user preferences over objectives in an intuitive
manner. In real-world multi-agent environments, objectives have
varying degrees of importance, and current state-of-the-art fails
to capture how important an objective is to a given user. Previous
works on multi-objective multi-agent learning have used linear
scalarisation techniques to specify the relative importance of objec-
tives [8, 16]. The weights chosen in this approach can only be found
through extensive parameter sweeps by expert system users. When
using linear scalarisation values, a small change in the input weight
value can lead to a large change in the output. It was noted by Van
Moffaert et al. [12] that linear scalarisation functions are not suit-
able as a basis for an exploration strategy as they are biased towards
particular actions, while ignoring other Pareto dominating actions.
Our dynamic Thresholded Lexicographic Ordering method, which
is a non-linear technique, aims to remedy these shortcomings. TLO
has future potential in many multi-objective multi-agent domains,
such as: natural resource management [3], traffic signal control [5],
scheduling tasks on multi-core processors [6] and ground water
monitoring [1].

3.1 Multi-Agent Thresholding
The current literature has only studied TLO with regard to multi-
objective single-agent RL. In this paper we present, for the first
time, a detailed study of TLO with MOMARL.

We can consider a multi-agent environment to be stochastic;
from an individual agent’s perspective, the environment is stochas-
tic as the actions of each agent affect the global reward. This is also

the first time TLO has been evaluated empirically in a stochastic
environment.

To expand TLO beyond a single agent setting we must also re-
consider how thresholds are defined. In a single agent domain, only
one agent interacts with a threshold making threshold selection an
easy task. In a cooperative setting, the threshold for global system
performance on each objective is shared by all agents.

Thresholds in our work are based on the global system reward.
Setting a threshold based on the local rewardwould require a thresh-
old per agent per timestep. This would be a complex task, given at
each timestep an agent can take any allowed action. For example,
in the Dynamic Economic Emissions Dispatch problem (Section 4),
where 9 agents control 9 generators, it would be necessary for each
agent to have its own individual threshold. Setting accurate indi-
vidual thresholds in this problem domain would require a different
threshold for each of the 24 timesteps and would require detailed
knowledge of the effect of each agent’s actions at each timestep.
As we are interested in simplifying the process of specifying user
preferences in MOMARL, we adopt threshold values that are set
globally and are shared by all agents. Each agent will keep track
of the global threshold and subtract the global reward for each
timestep during learning, leaving a remaining threshold value for
later timesteps. In theory by the end of an episode, the remaining
threshold value will be 0 for each objective.

3.2 Threshold Methodology
The current state-of-the-art literature on TLO does not describe any
methodology for setting thresholds. Several authors (e.g. [7, 11])
set thresholds based on their experience with the specific prob-
lem domain, adding further unnecessary complexity and painting
threshold selection as a trial and error process rather than a science.

In TLO a threshold is specified for each objective, with the ex-
ception of the final objective. The system attempts to reach the
specified threshold for each objective, while the final objective is
optimised. In this paper, we have used a threshold vector T that
contains the desired outcome for an entire episode. T can be defined
as the following:

T = [дoalValue1, ...,дoalValuen−1] (6)

where n is the number of objectives and дoalValue is the desired
outcome for each objective.

Fixed thresholds rely on a user having previous knowledge of
an advantageous outcome. The user will specify a desired system
outcome for each required objective. Fixed thresholds have the
limitation of requiring specialist knowledge of the system to ensure
a useful threshold is set. Refining fixed thresholds to obtain an
optimal solution takes significant expertise and is a trial and error
process.

To address this shortcoming, we propose dynamic thresholds
set by the system through evaluations of the system’s previous
performance. Each threshold is defined by the system via feedback
received on the current and previous performance. Using the in-
formation gathered via feedback a useful threshold value can be
defined. Dynamic thresholds do not require any specialist knowl-
edge of an optimal outcome for a system and therefore simplify the
process of specifying user preferences for MOMARL.
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When using dynamic thresholds we do not require a minimum
acceptable value of each objective from the user, just the user’s
preference over how they order the objectives. For example, a user
of an autonomous vehicle might want to get to their destination
as quickly as possible without any regard for obeying traffic laws.
Another user might want to get to their destination in the quickest
time possible, but without breaking any laws. The importance of
each objective varies significantly depending on the user, but they
may not know how to quantify their preferences with exact thresh-
old values. Thus, we have defined a methodology to incorporate the
subjective importance of objectives without resorting to manually
specifying weights (as in linear scalarisation) and/or thresholds (as
in previous TLO approaches).

3.3 Continuous Improvement Thresholding
Continuous Improvement Thresholding (CIT) is a novel form of
optimistic dynamic thresholding introduced in this paper. CIT en-
hances performance while learning by setting new threshold values
without the need for expert user input.

At each episode the previous system performance is evaluated
for each objective. If the previous performance, px , for an objec-
tive is the best performance in a set of previous performances,
{p1,p2, ...,pn }, where n is equal to the number of episodes, then
the threshold, T, for objective, o, is defined as:

To = px (7)

Algorithm 2: CIT Selection Algorithm
1 At episode = 1, set thresholds T = 0 for all objectives
2 At episode = 1, pepisode = 0 for all objectives
3 for episode in numEpisodes do
4 for objective in numObjectives do
5 add pepisode to {pnumEpisodes }

6 if pepisode > poptimal then
7 poptimal = pepisode
8 end
9 Tob ject ive = poptimal

10 end
11 end

When setting a fixed threshold a user will specify an optimal
value based on previous experience. When defining dynamic thresh-
olds a trade-off between optimistic and realistic thresholds must
be made. An optimistic threshold is set based on the best previ-
ous performance of the system, e.g CIT. A realistic threshold is set
based on finding a balance between an optimal threshold and an ob-
tainable threshold. When using optimistic thresholds in stochastic
problem domains (e.g. domains that are noisy due to the effect of
other agents learning), optimistic thresholds can become unobtain-
able and the system only optimises the first objective. In order to
counteract this effect we propose the following enhancements that
can be used with the CIT algorithm in stochastic problem domains:

Enhancement 1 applies a 10% decrease buffer to the previous
best system performance for each objective and sets this as the
threshold.

Enhancement 2 uses the average of the best previous perfor-
mance with a fixed window (e.g. the last 200 episodes’ perfor-
mances) for each objective, and sets this value as the threshold.

Enhancement 3 identifies when the CIT algorithm has estab-
lished an unobtainable threshold, and using this information sets a
threshold based on the average of the previous values.

The proposed enhancements aim to preserve the importance of
a particular objective to a user. The importance of objectives for
users is lost when using optimistic thresholds. Using the CIT algo-
rithm on its own optimises the first objective with high importance,
while using CIT with any of the proposed enhancements optimises
all objectives individually. CIT and the proposed enhancements
attempt to capture how important an objective is to a user in MO-
MARL without explicit input apart from specifying the ordering of
objectives.

4 THE DYNAMIC ECONOMIC EMISSIONS
DISPATCH (DEED) DOMAIN

DEED is a problem first introduced by Basu [2]. In DEED a number
of electrical generators must be scheduled in order to provide power
for a population while minimizing both cost and emissions. This
problem has received attention in recent years, and techniques such
as Particle Swarm Optimization [9] and linear scalarised MOMARL
[8] have been applied to it. For our experimental work, we use a
multi-objective stochastic game version of the DEED domain [8].

Since this problem will use multiple agents, an agent will be used
per generator. There will be an agent for each directly controlled
generator. In DEED there are 10 generators but only 9 are directly
controlled since the slack generator, when n = 1, has its values set
indirectly to account for the difference between the power demand
and the actual power generated by the 9 directly controlled genera-
tors. There will be 9 agents used where i ∈ {2, ..., 10}. Each agent
will set the power output of its generator n = i at every timestepm.

4.1 Reward Structures in the DEED Domain
In order to measure the system performance, we use emissions and
cost functions [2, 8]. f Lc computes the local cost for each generator,
n, over hourm:

f Lc (n,m) = an+bnPnm+cn (Pnm )
2+ |dnsin{en (P

min
n −Pnm )}| (8)

Therefore the the global cost function f Gc for all generators over
hourm is:

f Gc (m) =
N∑
n=1

f Lc (n,m) (9)

f Le computes the local emissions for each generator, n, over hour
m. This equation is defined below:

f Le (n,m) = E(an + bnPnm + γn (Pnm )
2 + η expδPnm ) (10)

where E = 10 [8] the emissions scaling factor, chosen so the magni-
tude of the local emissions function f Le matches that of the local
cost function f Lc . It follows that the global emissions function f Ge
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for all generators over hour m is:

f Ge (m) =
N∑
n=1

f Le (n,m) (11)

The state for each is defined as a vector that contains the change in
power demand since the previous timestep, ∆PD , and the previous
power output of the generator n, Pnm . Therefore the state vector
for agent i (controlling generator n) at timem is:

sim = [∆PDm, Pn(m−1)] (12)

The power limits and the ramp limits for the slack generator must
be taken into consideration. A global penalty function f Gp based
on the static penalty method developed by Smith et al. [10]. This
function captures the violations of these constraints:

f Gp (m) =
V∑
v=1

C(|hv + 1|δv ) (13)

It is important to note the penalty function is an additional objective
that will need to be optimized in conjunction with the cost and
emissions functions [8]. All equations and parameters absent from
this paper that are required to implement this problem domain can
be found in the works of Basu [2] and Mannion et al. [8].

4.2 Calculating Counterfactuals
The counterfactuals outlined in this section are used for calculating
the difference reward [8]. The counterfactual cost, emissions and
violation terms for an agent, i , are calculated by assuming that
the agent did not chose a new power output value in the previous
timestep. The counterfactual for cost is calculated by the following:

f
G(z−i)
c =

N∑
n=1
n,i

f Lc (n,m) + f Lc (i,m − 1) (14)

The counterfactual for emissions is calculated by the following:

f
G(z−i)
e =

N∑
n=1
n,i

f Le (n,m) + f Le (i,m − 1) (15)

The output of the counterfactual version of f G(z−i)p of the penalty
function f Gp is calculated using Eqn. 13. The required equations for

defining parameters to find f
G(z−i)
p can be found in the work by

Mannion et al. [8].

4.3 Scalarisation of Objectives
The difference and global reward structures for each objective are
scalarised with linear scalarisation (+) [8]:

R+ = −
O∑
o=1

wo fo (16)

wherewo is the objective weight, fo is the objective function (global
or difference, where appropriate) and the generic R is replaced by
G or D. The objective weight used as wc = 0.225, we = 0.275 and
wp = 0.5. These are hand-tuned values from prior work by other
authors, and will serve as a comparison to our dynamic thresh-
olding approach [8]. The agents receive one of these scalarised

reward signals while learning: G(+), D(+). Agents learning with
TLQ-learning do not receive any scalarisation.

4.4 TLQ-Learning Reward Structure
Agents implementing TLO learn with a variant of the global reward
using a vector-based structure. The ordering of objectives within
the reward vector r (defined in Equation 5) is subject to change
depending on which objective is being optimised first. For example,
a system optimising objectives in the following order; violations,
cost, emissions will have the following reward structure:

r = [f Gp (m), f
G
c (m), f

G
e (m)] (17)

4.5 Action Selection
Each agent has a set of 101 possible actions, A∗ = {0, 1, ..., 99, 100},
and each action represents a different percentage value of the oper-
ating range of the generator [8]. All agents select actions using an
ϵ-greedy strategy, while agents learning with Q-learning use the
standard Q-learning action selection algorithm. Agents learning
with TLQ-learning use the action selection algorithm defined in
Algorithm 1.

5 EXPERIMENT EVALUATION
5.1 Experimental Procedure
In this version of the DEED problem the agents learn for 20,000
episodes, where each episode contains 24 hours. The power de-
mand profile for this experiment is the same power demand profile
used in previous works by other authors [2, 8, 9]. The learning
parameters for all agents are as follows: α = 0.10, γ = 1, ϵ = 0.
Setting ϵ to 0 means that optimistic initial Q values (i.e. all Q val-
ues set to 0.0) are used to encourage exploration. These values
were selected following parameter sweeps to determine the best
performing settings.

5.2 Effect of Ordering of Objectives on System
Performance

The ordering of objectives when using TLQ-learning has a signif-
icant impact on the overall system performance. For the DEED
problem domain, we theorised that the violations objective should
always be optimised first as in a real-world system generator power
violations would not be tolerated or possible without overall system
failure. Using this theory as a basis for experimentation we tested
this idea by optimising emissions (TLO Violations - Emissions) and
cost (TLO Violations - Cost), then tested our system by optimising
cost followed by violations (TLO Cost - Violations).

We can see noticeable performance fluctuations when the order
of the objectives varies. In this section we have only evaluated the
effect of using dynamic thresholds. In Figure 1 when we optimise
the the cost objective first (TLO Cost - Violations) the system per-
formance suffers as the agents fail to lower the violations objective
to a favorable level.

In Figure 1, when violations are optimised first, the system per-
formance is enhanced compared to when cost is optimised first.
Optimising with TLO Violation - Emissions has the greatest influ-
ence on the system for the violations objective. Optimising with
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Figure 1: Effect of Ordering of Objectives for Violations

TLO Violations - Cost finds a better solution for violations, although
it takes the system longer to learn this solution when compared to
TLO Violations - Emissions.

Figure 2: Effect of Ordering of Objectives for Cost

In Figure 3, TLO Cost-Violations does not learn a good solution
and has issues learning throughout the experimentation process,
this is reflected in TLO Violations - Emissions, which also has
difficulty learning. TLO Violations - Cost learns an optimal solution
over 20,000 episodes although the learning rate is slow.

In Figure 2, TLO Cost-Violations performs poorly when com-
pared to the other ordering types, while TLO Violations - Cost and
TLO Violations - Emissions learn optimal solutions. The results
presented in Figures 1, 2 and 3 confirm the order of objectives can
have a significant impact on system performance.

5.3 Comparison of Dynamic and Fixed
Thresholding Techniques

To evaluate the performance of fixed thresholding compared to
dynamic thresholding, we conducted a number of experiments
with varying thresholds and compared the results against dynamic

Figure 3: Effect of Ordering of Objectives for Emissions

thresholding. We tested various fixed thresholds in order to convey
the level of system knowledge and experimentation that is required
to identify and select a useful threshold value. We executed six
separate experiments with six different thresholds and contrasted
these with other experiment results that used dynamic thresholding.
In this experimentation set we optimised objectives in the following
order: violations, cost and emissions. This is the best ordering of
objectives that was identified in Section 5.2.

Table 1: Fixed Threshold Parameters

Experiment Name Violations Cost
TLO-1 0 0
TLO-2 −1 × 108 −2.8 × 108
TLO-3 −3 × 107 −6 × 107
TLO-4 −2 × 107 −3 × 107
TLO-5 −1 × 107 −2.8 × 106
TLO-6 −5 × 106 -2.6 × 106

The fixed thresholds used in the experimentation are specified in
Table 1. TLO-1 to TLO-3 are large values that the system produces
before learning optimal solutions and, therefore, should have a neg-
ative effect on system performance. TLO-4 to TLO-6 are predefined
optimal outcomes, with TLO-6 being the most optimal solution.
The dynamic threshold experimental results are represented in Fig-
ures 4, 5 and 6 as TLO-Global. TLO-Global uses Enhancement 2
that was established in Section 3.3. Enhancement 2 achieved better
results in initial experimentation when compared to Enhancement
1 and Enhancement 3. This experimentation set marks the first time
fixed and dynamic thresholding techniques have been evaluated
together.

Figures 4, 5 and 6 present the effect of each fixed threshold on
cost, emissions and violations. From the graphs presented, there
is no significant improvement in performance for specifying any
particular thresholds.

From Figures 4, 5 and 6 we can deduce that threshold selection is
not a determining factor in the final system performance when us-
ing TLQ-learning in a multi-objective multi-agent problem domain.
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Figure 4: Effect of Fixed Thresholding for Violations

Figure 5: Effect of Fixed Thresholding for Cost

Figure 6: Effect of Fixed Thresholding for Emissions

To determine an optimal solution, specialist knowledge is required

with significant trial and error. In this case, it is recommended
to use dynamic thresholding with the CIT algorithm. Although
performance is not better when compared to fixed thresholding
techniques, CIT removes the need for specialist knowledge.

Using the CIT algorithm can remove the trial and error associ-
ated with selecting thresholds. In Figure 6, the TLO-Global (CIT
algorithm with TLQ-learning) has better performance than all fixed
threshold experiments. In Figures 4 and 5, TLO-Global (CIT al-
gorithm with TLQ-learning) and all fixed threshold experiments
perform as well as each other.

5.4 TLQ-learning with CIT vs. linear
scalarisation

In this section we compare standard benchmark reinforcement
learning scalarised rewardsG (+) andD (+)with our CIT algorithm
with TLQ-learning (TLO-Global). Note that D (+) is included here
only to show best case performance in this domain when perfect
global information is available to all agents during learning; D (+)
uses far more information than our TLO-Global approach as it
calculates an individually shaped reward signal for each agent
in the system, whereas TLO-Global does not. In this section, we
are interested in whether our dynamic TLO approach can achieve
better performance than the scalarised global reward with hand
tuned weights. Comparing our TLO-Global with the D(+) reward
is however crucial to understanding the performance compared to
the state-of-the-art results, but it is not a fair comparison. All plots
for cost, emissions and violations are based on a 200 point average
across 50 statistical runs. All claims of statistical significance are
supported by two-tailed t-tests assuming unequal variances, with
p = 0.05 selected as the threshold for significance.

Table 2: DEED Average Solutions

Cost ($ ×106) Emissions (lb ×105) Violations
G(+) 2.8712 4.4183 1594.2466
TLO - Global 2.8305 4.2107 1612.6165
D(+) 2.7079 3.9822 1624.4449
NSGA-II [2] 2.5226 3.0994 -
PSO-AWL [9] 2.5463 2.9455 -

In Figures 7, 8 and 9, the D (+) reward performs as expected
converging to a stable policy in less than 500 episodes. TheG (+)
learns a good policy, it takes the G (+) reward over 5,000 episodes
to converge.

The results generated in this experimentation set replicate the
findings of Mannion et al. [8], where the D (+) reward is statisti-
cally better than G (+). The aim of this section is to evaluate the
TLO-Global reward against the linear scalarised rewards for cost,
emissions and violations. The linear scalarised reward structures
perform as expected across all objectives. TLO-Global also reaches
a lower cost than the G (+) reward and converges to a similar vi-
olations result as D (+) and G (+). Finally, TLO-Global reaches a
lower emissions value when compared to G (+).

There is no statistical significance when comparing the mean
performance of TLO-Global and D (+) for the cost objective. The
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Figure 7: Cost with Linear Scalarisation

Figure 8: Emissions with Linear Scalarisation

differences in the means between TLO-Global and G (+) are statis-
tically significant for the cost objective (p = 1.2783 × 10−4). There
is no statistical difference between TLO-Global and D (+) or TLO-
Global and G (+) for the violations objective. For the emissions
objective the difference in final means of TLO-Global and D (+)
are not statistically significant, while the difference in final means
for TLO-Global and G (+) were found to be statistically significant
(p = 0.002895). Therefore, it can be concluded that our dynamic
TLO approach outperforms the G (+) with hand tuned weights
from prior work [8] reward on the cost and emissions objectives.

6 CONCLUSION & FUTUREWORK
Multi-objective optimisation appears in various disciplines and
is a fundamental mathematical problem. Using linear scalarisa-
tion techniques with MARL to find solutions to multi-objective
problems has been successful but the limitations are significant.
In this paper we have successfully extended TLO to be used with
Q-learning in a large MOMARL problem domain. The results we
have presented highlight the fact that TLO, used with our dynamic

Figure 9: Violations with Linear Scalarisation

thresholding technique, can exceed the performance of a hand-
tuned linear scalarisation approach when learning with the global
reward. Using TLO with Q-learning for MOMARL has many possi-
ble future applications, such as natural resource management [3]
and traffic signal control [5].

With respect to future studies, it would be important to evaluate
TLO using thresholds set at a local level by giving each agent its
own threshold. This complex experimentation has not been carried
out before and it could have benefits to overall system performance.
It would also be important to evaluate TLO in a non-cooperative
MOMARL environment, as the DEED domain is a cooperative en-
vironment. It would also be promising to create a TLO-Difference
reward that captures each agents’ contribution to the system per-
formance. Given the results for TLO-Global perform better than
the G(+) reward it could be possible to create a reward structure
that performs better or at least as well as the D(+) reward.

Although our results are promising there are some limitations;
the objectives of violations, cost and emissions in the DEED prob-
lem domain are correlated. Optimising one objective results in
optimising the other objectives, while the exact degree of corre-
lation is unknown, which was noted during experimentation. We
expect even more significant results could be demonstrated in other
MOMARL domains where the objectives have a lower degree of
correlation. We also plan to include more thorough results of ex-
perimentation for the CIT enhancements in a later publication as
these results are only briefly mentioned in this paper.
Finally, setting thresholds with TLQ-learning is a more intuitive
process when compared to setting weights using linear scalarisa-
tion. Using our dynamic thresholding technique can also remove
the requirement for user expertise completely when using TLO in
MOMARL domains.
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