
Optimising a Real-time Scheduler for Railway Lines using
Policy Search

Rohit Prasad, Shivaram Kalyanakrishnan
Indian Institute of Technology, Bombay

Mumbai, India
[rohitrp,shivaram]@cse.iitb.ac.in

Harshad Khadilkar
TCS Research
Mumbai, India

harshad.khadilkar@tcs.com

ABSTRACT
This paper describes a policy search approach for railway scheduling
using the covariance matrix adaptation evolution strategy (CMA-ES).
The goal is to define arrival/departure times and track allocations
for all trains such that the resource and operating constraints of the
railway line are satisfied, and priority-weighted train departure delay
is minimised. The proposed approach is scalable in the sense that
(i) the optimised policy can be applied to an arbitrarily long railway
line, independent of the number of trains, tracks, and stations, and
(ii) the on-line implementation is computationally light enough to be
applied in real-time. Our experiments show that policies computed
with CMA-ES are able to produce solutions with lower priority-
weighted delay than heuristics and reinforcement learning (RL)
algorithms reported in literature, on synthetic examples as well as
actual railway line data from portions of the Indian Railway network.

KEYWORDS
Evolutionary Policy Search; Planning; Railway Scheduling

1 INTRODUCTION
Punctuality is one of the principal factors for users (both passenger
and freight) when selecting a mode of transport, in addition to cost
and time considerations. Road and rail are direct competitors because
they have similar time and cost implications [29]. Punctuality in rail-
ways is of particular interest because railway systems are invariably
managed by a higher authority who can control their operations
more effectively. Delay in a railway context is typically defined as
the difference between scheduled and actual arrival/departure times
for a train at a halting station.

Delays in railway systems have potentially large economic costs.
In Britain, a study estimated that their impact could be as high
as GBP 0.54 per minute for passengers [23]. In the US, a similar
study reported a delay cost of USD 232 per hour for U.S. Class 1
railroads (primarily freight), without accounting secondary effects
such as revenue loss [27]. To some extent, primary delays (caused
by equipment failures) are unavoidable. However, one can aim to
reduce the secondary delays caused by knock-on effects during
rescheduling, following an instance of primary delay [14].

Most railway systems operate with reference to a timetable, which
is a conflict-free ideal operating schedule for all trains in the system.
Dispatchers observe the operations in real-time, and are tasked with
rescheduling trains whenever deviations from the timetable render
the planned operations infeasible. Each dispatcher is typically re-
sponsible for a unique portion of the network (a string of stations
on a single railway line, or a smaller number of stations around a
junction where two or more railway lines meet) [25]. Given the short

time available, limited human cognitive ability, and the arbitrary
nature of particular delayed states, dispatchers make rescheduling
decisions using thumb rules or heuristics.

Automated rescheduling (or real-time scheduling) systems aim
to encode such heuristics into a fixed set of rules. We cover these
methods in Section 2. Since the railway scheduling problem can
be formulated in a mixed-integer linear programming framework,
one can imagine solving it using exact techniques. However, the
short reaction time constraints and the NP-hard nature of the formu-
lation [2, 4] make this an infeasible proposition in the real world.
On-line search techniques face a similar challenge [20, 32], since
the search spaces are large and time is short. They tend to be applied
to timetable generation rather than real-time application. Recently,
approaches using Reinforcement Learning (RL) have shown better
solution quality than heuristics [16]. RL is a feasible approach be-
cause the computational effort of training is expended off-line, while
the on-line implementation is lightweight. We assume a similar view-
point, with the difference that we employ policy search. In particular,
we represent a key part of our scheduling policy as a neural network,
and optimise its weights using the covariance matrix adaptation evo-
lution strategy (CMA-ES) [11]. Several reasons support the use of a
policy search approach.

(1) Policy search methods are attractive because they directly
optimise the objective function (priority-weighted aggregate
train delay), rather than a proxy as typically used in value-
based RL [16].

(2) Since the number of states and actions in a railway network
grow exponentially with the number of trains, realistic sched-
ulers are constrained to make decisions based on only a
small amount of “local” information. In the resulting non-
Markovian environment, policy search is known to have an
edge over value-based RL [9, 33].

(3) Policy search methods allow for encoding various forms of
domain knowledge in a natural way (as described in Sec-
tion 3). We open up only a small number of parameters for
optimisation, thereby ensuring efficient search.

(4) Like RL, policy search, too, produces an associative mapping
from state to action that can be used on-line in real-time. The
computational effort it demands is primarily off-line. With
the speed-up offered by parallelisation, the largest real-world
test case in Section 5 requires 15 minutes per generation on
50 machines, and only a couple of hours in total.

(5) Most importantly, we obtain significantly better solutions
(with lower delays) using policy search; Figure 1 provides a
visual comparison with RL on three real lines in the Indian
network. These sheer gains make policy search a method of
choice for railway scheduling.

Since the value-based RL approach of Khadilkar [16] represents
the state-of-the-art (our own experiments demonstrate that it out-
performs several preceding approaches), we present our solution
specifically as a comparison with RL. We use the same state and
action space definitions as those used by Khadilkar [16]. However,
instead of deriving an indirect policy from a value function using
tabular Q-learning, we directly search in the space of policies using
CMA-ES.

We begin with a review of related work on railway scheduling
(Section 2) before formalising the task in Section 3. We describe our
solution in Section 4 and present results in Section 5. We conclude
with a discussion in Section 6.

2 RELATED WORK
A review of literature in the field of railway scheduling [1, 7] shows
four broad approaches to solving the problem. First, there are studies
that map the problem to job shop scheduling [4], and propose a
mixed-integer linear programming (MILP) solution. They model
arrival and departure times as continuous decision variables, and
use binary indicator variables for resource allocation [22]. Related
ideas include preprocessing for speed-up [8] and constraint program-
ming [24]. While optimisation methods are feasible for developing
reference timetables (a one-time exercise), they are not useful for
real-time application because on-line MILP solvers have high com-
putational complexity and slow response.

A second popular approach is known as Alternative Graphs
(AG) [6, 19, 26], originally used for the no-store (or blocking) job
shop scheduling problem. No-store means that a job cannot leave
a machine (railway track) until the subsequent machine (track) be-
comes available. AG methods are typically focused on detecting
and avoiding conflicts, such as when more than one train acquires
a railway track at the same time. However, the computation of so-
lutions has the same challenges with mathematical complexity as
exact solutions.

0 20 40 60 80 100
CMA-ES

0

20

40

60

80

100

RL

KRCL
Ajmer
Kanpur

Figure 1: Normalised priority-weighted departure delay ob-
tained by CMA-ES and RL on 100 perturbed timetables for
three railway lines: KRCL, Ajmer, and Kanpur. Detailed re-
sults are in Section 5.

Third, many practical implementations use heuristics specially
designed for railway scheduling (and rescheduling). Travel advance
heuristic (TAH) [30] is a common method which solves the problem
of scheduling by moving one train at a time. The performance of
TAH is dependent on the order in which vehicles are moved, and the
number of tracks used for ‘look-ahead’. For every train, TAH sets the
arrival time at the next node. If due to some conflicts, a train cannot
move, it backtracks by requesting a delayed departure time at the
current node. To reduce the amount of backtracks, Khadilkar [15]
proposes a conflict-free logic for choosing the order of train move-
ments. If the initial state of the system satisfies certain conditions, it
proves that the scheduling can be completed without encountering
any deadlock or backtracking. While feasible for use in real-time ap-
plications, handcrafted heuristics have unknown optimality gaps, and
are not able to adapt to the nuances of specific problem instances.

Finally, recent studies have proposed the use of reinforcement
learning (RL) for the real-time scheduling problem. Šemrov et al.
[28] use Q-learning to learn a policy for railway scheduling. The
state representation is comprehensive, and includes the current lo-
cations of the trains, current availability of each section, and time.
The size of the action space is equal to the number of tracks in
the network infrastructure. As the size of the state space is directly
proportional to the railway network, the state space becomes un-
manageable for realistic networks. To circumvent this combinatorial
growth, Khadilkar [16] defines the state space of a train in terms of
its local resources: a fixed number of resources behind and in front
of the train. Since this number is independent of the actual network,
it can easily scale up and transfer.

Evolutionary algorithms have been applied to many problems
in transportation; we point out some examples. Cevallos and Zhao
[3] present a genetic algorithm to minimise transfer time in bus
transit, while Dundar and Sahin [5] present one for conflict resolution
during re-scheduling. Huang et al. [13] evolve a binary encoding
to optimise two objectives—energy consumption and travel time—
on the Beijing-Yizhuang subway line. Similarly, Zhang et al. [34]
propose a multi-objective particle swarm optimization algorithm to
reduce both train delay and the number of trains delayed and test it
on Beijing-Shanghai express railway.

3 TASK SPECIFICATION
A number of real-time scheduling algorithms are described in Sec-
tion 4. All the algorithms run in conjunction with the discrete event
simulation logic described in this section.

3.1 Simulating train movement on railway lines
In this work, we focus on the problem of scheduling railway lines,
which implies that there are no junctions or branches in the simu-
lation. However, trains can begin and/or end their journeys at any
station, as long as they move in a single direction (either left-to-right
or right-to-left as shown in Figure 2). The initial state can be an
empty line (no trains pre-existing) or a predefined state (current
locations and directions of trains).

Infrastructure. The physical infrastructure of the railway line is
defined first. This consists of two types of resources: stations where
trains can halt, and sections on which trains move from one station

2

to the next. Each station or section (resource) contains one or more
parallel tracks, each of which can be occupied by at most one train
at any time. For simplicity, we assume that any train is allowed to
occupy any track in a resource. The number of tracks in a resource
(hence the number of trains that the resource can hold simultane-
ously) is its capacity. The example in Figure 2 has 5 stations and 4
sections. There are 8 trains shown, 4 at each of the terminal stations.
Trains starting at Alpha move towards the right, and vice versa. Each
station on the line contains four parallel tracks, while the sections
have a single track each.

Schedule constraints. Each simulation episode begins with a pre-
defined initial state. For each train, we assume that there exists an
ideal timetable that defines its desired arrival and departure times for
each station on its journey (departure time from a station is equal to
the arrival time in the next section. Additionally, we assume that the
minimum traversal time on each section, the minimum halt time at
each station, and the priority level are externally defined for each
train. The two former quantities define constraints on the schedule.
We discuss “priority level” later in this section.

Running the simulator. The overall flow of control in our simulator
is shown in Figure 3. The simulator retains a list of upcoming events,
one for each train. Each event corresponds to the time at which the
next decision for the train will be needed. If the train has yet to start
its journey, this will be the desired arrival time at its first station;
if the train is at a station, it is the earliest feasible departure time
from that station; and if the train is running in a section, it is the
earliest feasible arrival time at the next station. The ‘earliest feasible’
time is the maximum of the ideal (timetable) time and the value
computed by adding the minimum halt (or traversal) duration to the
last known arrival (or departure). This ensures that minimum halt
time and section traversal time constraints are respected, and that
trains do not arrive or depart earlier than their scheduled times.

The simulation clock is set to the earliest time in the list of events.
At each step, the set of trains with events at the current clock time is
retrieved. If there is more than one train in the set, they are first sorted
according to the residual capacities (free tracks) in their current
resources, followed by their priorities. The sorting order is based
on a deadlock-avoidance criterion proposed by Khadilkar [[2017]].
Then the trains are processed sequentially according to the logic
described in Section 3.2. For trains that choose to wait in the current
resource, the event time is incremented by 1 unit. For trains that
choose to move to the next resource, the event times are updated
according to the minimum halt/traversal durations.

A constraint known as headway (minimum time gap between
departure of one train from a resource and arrival of next train into
the same resource) is implemented by assuming that each train

Figure 2: Illustrative railway line [16].

occupies one track on both resources (current and new) for 1 time
unit1. When a train completes its journey (departure from last station
on its route), it is removed from the event list. The simulation episode
thus ends when all trains complete their journeys and the event list is
empty. Should two or more trains get deadlocked (no further moves
possible), the simulation terminates on crossing a predefined time
threshold.

3.2 Logic for individual train decisions
The simulation logic is identical for all algorithms in this study,
except for the shaded box in Figure 3. This box computes a binary
decision for each train: whether to move to the next resource, or wait
in the current resource. The logic is composed of two subroutines,
described below.

Step 1: Preprocessing for deadlock avoidance. Since trains cannot
move backwards except in very rare instances, a significant risk in
railway lines is the possibility of deadlock [15, 18]. This condition
occurs when trains heading in opposite directions occupy tracks on
neighbouring resources in such a way that none of the trains can
move forward. The station capacity is invariably higher than the
section capacity, with the result that sections form the bottlenecks.
Therefore, we introduce a simple heuristic that ensures that any train
moving into a bottleneck (section) has a feasible future move (into
the next station). We look at the next station on a train’s journey,
which is assumed to contain Nr tracks. If the next station (i) already
holds Nr trains, or (ii) currently holds more than (Nr − 2) trains
heading in the same direction, a decision of wait is forced. Figure 4
shows four illustrative scenarios.

This logic is based on the concept of ‘legal states’ [18], which
ensure that two sets of trains heading in opposite directions have a
feasible set of moves to completely pass each other. The fact that we
only look ahead to one station does not guarantee deadlock avoid-
ance, but it ensures that deadlocks are sufficiently rare, so learning
will mostly encounter useful policies. It can be shown that a stronger
assumption such as reservation of at least one track at each station
for unidirectional movement (one track for left-to-right only, another

1In reality, the headway constraint is imposed by the fact that trains move carriage-by-
carriage onto the next track.

Figure 3: Flowchart of simulation logic. The shaded box is ex-
plained in Section 3.2, and the remaining boxes in Section 3.1.

3

for right-to-left only, and additional tracks available for both direc-
tions) always results in ‘legal states’, and is therefore guaranteed
deadlock-free. However, this makes the schedules more conservative,
and can result in greater values of delay. We include this logic in the
comparisons in Section 5.

Step 2: Computing move/wait decisions. If the preprocessing logic
in Step 1 is cleared, we refer to an optimised policy (Section 4) to
decide whether the train should move to the next resource at this
time, or wait in the current resource for one time step. The policy
is represented by a neural network, with the states and actions as
defined by Khadilkar [[2019]]. For each train, the state is formed
by concatenating its priority code (externally defined) and a vec-
tor indicating the occupancy of a fixed number of resources (also
externally defined) in the local neighbourhood. We assume that a
total of lb resources behind the train (opposite to its direction of
movement) and lf resources in front (in direction of movement) are
included, along with the currently occupied resource (Figure 5). This
formulation results in a state vector of length (lb + lf + 2), consisting
of (lb +lf +1) elements for resources and one element for the priority
code. Throughout this work, we use lb = 2 and lf = 6; we find no
significant improvement by varying these parameters.

The numerical value of resource state, as provided to the decision-
making policy, is designed to indicate the availability (or otherwise)

(a) (b) (c) (d)

Figure 4: Preprocessing for avoiding deadlocks. Two stations
with a single track section in between are shown. A solid trian-
gle indicates the train for which a decision is to be taken, and
the tapering side of the triangles indicate direction of movement.
Moving in scenario (d) is not allowed because no track is avail-
able in the next resource.

Figure 5: State vector formation for a train using local re-
sources, with lb = 2, lf = 6, wc = wd = 1, R = 3. Values increase
with occupancy, with 0 being ‘fairly empty’ and 2 being ‘totally
full’.

of free tracks in that resource. For each resource r , status Sr takes
one of the R values from {0, 1, 2, 3, . . . ,R − 1}. A larger value of Sr
indicates greater congestion (fewer free tracks) in that resource. Let
the number of tracks in a resource r be Nr , the number of tracks
occupied by trains converging with the current train (moving in the
opposite direction) be Tr ,c , and the number of tracks occupied by
trains diverging from the current train (moving in the same direction)
be Tr ,d . As per the assumption stated before, only one train can
occupy a track at a time: hence, Tr ,c +Tr ,d ≤ Nr . the status Sr is
defined as follows.

Sr = R − 1 −min(R − 1, ⌊Nr −wcTr ,c −wdTr ,d ⌋),

where wc and wd are externally-defined weights. Figure 5 shows an
example for mapping occupancy to status value of local resources,
keeping wc = wd = 1 for simplicity of illustration. In the experi-
ments in Section 5, we use wc = 0.9 and wd = 1. The de-emphasis
on converging trains ensures that the algorithm prefers to pass trains
traveling in the opposite direction (a requirement for schedule com-
pletion) as compared to trains moving in the same direction (which
may lead to deadlock [18]).

Note that with a fixed size of the state vector, a finite number of
train priority levels, and the predefined resource status levels R, the
state space of the present formulation is finite and invariant with
the length of the railway line, as well as the number of trains to be
scheduled. As mentioned before, the action corresponding to any
given state is binary: {0, 1} or {wait, move}. Once a train decides
to move, the actual track assignment is made according to a first-
feasible logic. For trains heading right in Figure 5, we assign the
first free track looking from the top down. For trains heading left,
we assign the first free track when searched from the bottom up.

3.3 Objective function
The objective to be minimised is the summation of the train-priority-
weighted delay of departure time for each train at each station in its
journey. This definition has been previously used in the literature [5,
16]. A delay is defined as the difference between the scheduled
departure time by the algorithm and the desired departure time in
the initial timetable, with a lower bound of 0 (non-negative). It is
formally defined as

J =
1

Ndep

∑
r ,t

δr ,t
pt
, (1)

where Ndep is the total number of departures in the timetable, δr ,t is
the delay for train t at resource (or station) r , and pt ∈ {1, 2, . . . , P}
is the priority of train t (note that pt = 1 contributes the most, and
has the greatest priority).

3.4 Benchmark railway lines
An initial timetable and the infrastructure of the railway line is
required to set up the simulator. The initial timetable contains in-
formation about the journey of each train—stations, arrival time,
departure time, priority, minimum halt time at each station for each
train, and minimum traversal time for each train on each section.
These times can be arbitrarily defined, based on the type of loco-
motive attached to the train, the number of carriages being pulled,
gradation and turns on the route, and the priority of the train. The

4

infrastructure data contains all the stations, the number of tracks at a
station, and the number of tracks in sections between two stations.

We evaluate our method on the same railway line data sets used
by Khadilkar [[2019]] to benchmark his RL approach. The data set
comprises two synthetic (hypothetical) instances (HYP-2, HYP-3)
of increasing complexity, as listed in Table 1. The number of events
processed by the simulator includes one event (time of entry) for
each train at each resource on its route (stations and sections). In
addition, the data set contains three real lines on the Indian Railway
network. These are (i) 3 days of scheduled operations in 2014 on
Roha-Tokur in western India, referred to as KRCL in this work, (ii)
3 days of scheduled operation in 2014 on Kanpur-Tundla in northern
India, referred to as Kanpur, and (iii) 7 days of scheduled operation
in 2014 on Ajmer-Palanpur in northwestern India, referred to as
Ajmer. Note that the last two instances include sections with more
than 1 track between stations, while the first three instances only
contain single (bidirectional) tracks.

4 TRAINING WITH POLICY SEARCH
In this section, we describe our main contribution: the policy repre-
sentation and optimisation steps that underpin the binary move/wait
decisions for each train. The policy is represented by a neural net-
work. With parameter values lb = 2 and lf = 6 as described earlier,
the input size is lb + lf + 2 = 10. This is followed by three fully
connected hidden layers of 10 neurons each, with tanh activation.
The output is a softmax distribution over the two actions, and is
therefore of size 2. The parameters of the network—totally 352 in
number—are optimised in two steps, as described below.

4.1 Initialisation using imitation learning
Khadilkar [[2019]] suggests a set of conditions for finding a good
initial policy, which can speed up training. As shown in Table 2,
a ‘move’ probability is associated with states based on different
conditions that they satisfy. States that do not satisfy any of the
conditions are initialised to a probability of 0.5 for both actions.
Since we represent the policy using a neural network rather than the
tabular version used by Khadilkar [[2019]], we perform supervised
learning to initialise the network parameters. The weights are trained
to minimise mean squared error loss with respect to the values
in Table 2, aggregated unweighted over all (59,049) possible state
vectors. This initialisation allows us to set policy parameters that can
complete a large fraction of schedules without deadlock. We then
use CMA-ES to optimise the parameters further.

Scenario Stations Trains Events Timetable span

HYP-2 11 60 1320 4 hours
HYP-3 11 120 2640 7 hours
KRCL 59 85 5418 3 days
Kanpur 27 190 7716 3 days
Ajmer 52 444 26258 7 days

Table 1: Summary of railway line scenario scales.

4.2 Using CMA-ES for policy search
CMA-ES [10] is a policy search method that randomly generates
a population of solutions first around an initial seed, and thereafter
moves the generating distribution in a direction maximising fitness.
We pick this method based on its impressive track record on tasks as
diverse as network security [12], hydro-engineering [31], and robot
soccer [17].

While the initial guess provided is often zero or random, we
seed CMA-ES with the imitation-learned network parameters. All
instances in this study use the same initial guess for mean parameter
values. We observe that starting CMA-ES with imitation-learned
weights always resulted in faster convergence than using other ini-
tialisation techniques.

We minimise the fitness function given in (1). The population
size is kept at 51 for all experiments, and the fitness value of each
individual (a stochastic policy) is the average of 10 simulation runs.
Training is stopped when the population mean converges (remained
within a small neighbourhood over several generations). The best-
performing individual in each of the last 50 generations is chosen as
the winner. Training was done in Python on a cluster of machines,
each with an Intel Core i5-4690 CPU @ 3.50GHz with 2 cores (4
threads) and 8 GB of RAM.

5 RESULTS
From Figure 6, we observe that CMA-ES steadily reduces the objec-
tive function and has low variance across generations when training
is terminated.

Table 3 compares the priority-weighted delays for several compet-
ing algorithms. The reported numbers are averaged over the same set
of 100 independent timetables (none of these were used for training)
for all algorithms. The test timetables were produced by random
perturbations to the departure times of trains, drawn from a uniform
random distribution over [−30, 30] units, and added to the original
defined (or obtained) timetables. The algorithms being compared
are CMA-ES (proposed approach), RL (Q-learning, [16]), TAH-FP
(fixed priority, [30]) and TAH-CF (critical first, [15]). Results from
three baselines are also shown: (i) a naive greedy logic which moves
the train to next resource whenever a track is free in the immediate

States Satisfying Move Probability

1 Next resource is full 0.0

2
At least 3 consecutive
resources are full 0.10

3
Next resource is almost full,
next-but-one is full 0.15

4
Average status of upcoming
resources is between 0.5 and 1 0.85

5
Average status of upcoming
resources is less than 0.25 0.95

Table 2: Initial conditions learned using supervised learning
(adapted from Khadilkar [[2019]]). Trained neural network’s
weights were used as a starting distribution mean for CMA-ES.

5

2.5 5.0 7.5 10.0 12.5 15.0

Generat ion

0

20

40

60

80

100

P
o

p
u

la
ti

o
n

M
e

a
n

 D
e

la
y

 (
in

 m
in

s
)

Network

KRCL

Ajm er

Kanpur

Figure 6: Normalised priority-weighted departure delay (in
mins) for each generation for KRCL, Ajmer and Kanpur rail-
way lines

next resource, (ii) a version of greedy that uses the preprocessing
logic from Section 3, reserving one track for each direction when
possible, but always chooses to move when Step 1 is cleared, and
(iii) path-to-destination [18] where a train is moved only if there is a
free track in all resources ahead of it until its final destination.

We note that CMA-ES results in the lowest average priority-
weighted delays among all algorithms, for all 5 scenarios. In addition
to reporting the average delay, we report two performance metrics
in Table 3. The first are the numbers in parentheses, which list the
number of instances that resulted in deadlock (failure to complete
schedule). All algorithms except for CMA-ES, RL, and PTD (which
is guaranteed deadlock-free but very conservative) result in dead-
locks for at least a few instances. Average delays reported for these
algorithms exclude the deadlocked instances. Finally, we also report
the number of instances where CMA-ES resulted in a lower delay
than RL. We observe that as the traffic density increases (scenarios
with more trains on fewer stations in the same amount of time, as
given in Table 1), CMA-ES possesses a greater advantage.

6 CONCLUSION
The goal of this paper was to explore evolutionary search to optimise
policy parameters for on-line scheduling in railways. We showed
that our formulation, coupled with a specific policy search method
(CMA-ES), was able to outperform previously proposed methods
including RL (in tabular Q-learning form) and established heuristics.
We restricted our claims and comparisons with respect to these
methods because (i) the on-line nature of the problem puts a limit on
the maximum response time (not achievable using on-line search or

exact methods), and (ii) the scale of the problem instances has not
been successfully addressed by exact methods in literature. Given
the off-line-intensive, on-line-lightweight nature of our proposed
method, we believe that it could be used effectively in real-world
railway lines.

In future work, we would like to extend the method to handle full
railway networks with branches (as opposed to the linear topology
considered in this work). This will require an extension to the model,
but the problem space is already of interest to researchers [21]. An
equally significant research question revolves around the use of
explicit coordination between trains (agents) when moving through
resources, which could lead to more efficient solutions.

REFERENCES
[1] V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J.

Wagenaar. 2014. An overview of recovery models and algorithms for real-time
railway rescheduling. Trans. Res. Part B: Methodological 63 (2014), 15–37.

[2] X Cai and C Goh. 1994. A fast heuristic for the train scheduling problem. Com-
puters & OR 21, 5 (1994), 499–510.

[3] F. Cevallos and F. Zhao. 2006. Minimizing transfer times in public transit network
with genetic algorithm. Transportation Research Record 1971 (2006), 74–79.

[4] A D’Ariano, D Pacciarelli, and M Pranzo. 2007. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of OR 183, 2 (2007),
643–657.

[5] S. Dundar and I. Sahin. 2013. Train re-scheduling with genetic algorithms and
artificial neural networks for single-track railways. Trans. Res. Part C: Emerging
Technologies 27 (2013), 1–15.

[6] A. D’Ariano, D. Pacciarelli, and M. Pranzo. 2007. A branch and bound algorithm
for scheduling trains in a railway network. European Journal of OR 183, 2 (2007),
643–657.

[7] Wei Fang, Shengxiang Yang, and Xin Yao. 2015. A survey on problem models
and solution approaches to rescheduling in railway networks. IEEE Transactions
on Intelligent Transportation Systems 16, 6 (2015), 2997–3016.

[8] M. Fischetti and M. Monaci. 2017. Using a general-purpose Mixed-Integer Linear
Programming solver for the practical solution of real-time train rescheduling.
European Journal of OR 263, 1 (2017), 258–264.

[9] Faustino J. Gomez and Risto Miikkulainen. 1999. Solving Non-Markovian Control
Tasks with Neuro-Evolution. In Proc. IJCAI 1999. Morgan Kaufmann, 1356–
1361.

[10] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. 2019. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634. (Feb. 2019). https://doi.org/10.
5281/zenodo.2559634

[11] N. Hansen and A. Auger. 2011. CMA-ES: Evolution Strategies and Covariance
Matrix Adaptation. In Annual Conference on Genetic and Evolutionary Computa-
tion. 991–1010.

[12] Guan-Yu Hu, Zhi-Jie Zhou, Bang-Cheng Zhang, Xiao-Jing Yin, Zhi Gao, and
Zhi-Guo Zhou. 2016. A method for predicting the network security situation based
on hidden BRB model and revised CMA-ES algorithm. Applied Soft Computing
48 (2016), 404 – 418. https://doi.org/10.1016/j.asoc.2016.05.046

[13] Y. Huang, L. Yang, T. Tang, F. Cao, and Z. Gao. 2016. Saving Energy and
Improving Service Quality: Bicriteria Train Scheduling in Urban Rail Transit
Systems. IEEE Trans. on ITS 17, 12 (Dec 2016), 3364–3379.

[14] H. Khadilkar. 2016. Data-enabled stochastic modeling for evaluating schedule
robustness of railway networks. Transportation Science 51, 4 (2016), 1161–1176.

[15] H. Khadilkar. 2017. Scheduling of vehicle movement in resource-constrained
transportation networks using a capacity-aware heuristic. Amer. Control Conf.
(2017), 5617–5622.

CMAES Win/Lose/Tie RL TAH-FP TAH-CF
Naive
greedy

Greedy
with preproc. PTD

HYP-2 4.28 (0) 91 / 9 / 0 4.78 (0) 4.58 (0) 5.93 (0) 11.16 (2) 4.35 (0) 714.00 (0)
HYP-3 15.50 (0) 100 / 0 / 0 18.54 (0) 61.89 (97) 140.14 (95) - (100) 16.35 (0) 2003.98 (0)
KRCL 42.34 (0) 66 / 34 / 0 43.04 (0) 46.41 (8) 47.02 (0) - (100) 42.40 (0) 4714.08 (0)
Ajmer 3.92 (0) 100 / 0 / 0 4.65 (0) 10.76 (3) 5.99 (0) 9.25 (76) 3.99 (3) 8304.84 (0)
Kanpur 1.54 (0) 87 / 13 / 0 1.66 (0) 2.19 (0) 2.28 (0) 1.85 (0) 1.54 (0) 313.60 (0)

Table 3: Priority-weighted departure delay (in mins) averaged over 100 runs with perturbed versions of timetable used for training

6

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.1016/j.asoc.2016.05.046

[16] H. Khadilkar. 2019. A Scalable Reinforcement Learning Algorithm for Scheduling
Railway Lines. IEEE Trans. on ITS 20, 2 (Feb 2019), 727–736.

[17] Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter Stone.
2012. Design and optimization of an omnidirectional humanoid walk: A winning
approach at the RoboCup 2011 3D simulation competition. In Twenty-Sixth AAAI
Conference on Artificial Intelligence. AAAI Press.

[18] S. Mackenzie. 2010. Train scheduling on long haul railway corridors. Ph.D.
Dissertation. University of South Australia.

[19] A. Mascis and D. Pacciarelli. 2002. Job-shop scheduling with blocking and
no-wait constraints. European Journal of OR 143, 3 (2002), 498–517.

[20] K. Nitisiri, M. Gen, and H. Ohwada. 2019. A parallel multi-objective genetic
algorithm with learning based mutation for railway scheduling. Computers &
Industrial Engineering 130 (2019), 381–394.

[21] Erik Nygren, Adrian Egli, Giacomo Spigler, Mattias Ljungström, Jeremy Watson,
Christian Eichenberger, Guillaume Mollard, and Sharada Mohanty. 2019. Flatland
Challenge: Multi Agent Reinforcement Learning on Trains. (07 2019). https:
//doi.org/10.13140/RG.2.2.24477.05601

[22] P. Pellegrini, G. Marliere, and J. Rodriguez. 2012. Real time railway traffic
management modeling track-circuits. In ATOMOS 2012. France.

[23] J. Preston, G. Wall, R. Batley, J. Ibanez, and J. Shires. 2009. Impact of Delays on
Passenger Train Services: Evidence from Great Britain. Trans. Res. Record 2117,
1 (2009), 14–23.

[24] J. Rodriguez. 2007. A constraint programming model for real-time train scheduling
at junctions. Trans. Res. Part B: Methodological 41, 2 (2007), 231–245.

[25] E. Roth, N. Malsch, and J Multer. 2001. Understanding how train dispatchers
manage and control trains: results of a cognitive task analysis. Technical Report.
United States Federal Railroad Administration.

[26] M. Sama, A. D’Ariano, F. Corman, and D. Pacciarelli. 2017. A variable neigh-
bourhood search for fast train scheduling and routing during disturbed railway
traffic situations. Computers & OR 78 (2017), 480–499.

[27] B. Schlake, C. Barkan, and J. Edwards. 2011. Train Delay and Economic Impact
of In-Service Failures of Railroad Rolling Stock. Trans. Research Record 2261, 1
(2011), 124–133.

[28] D. Šemrov, R. Marsetič, M. Žura, L. Todorovski, and A. Srdic. 2016. Reinforce-
ment learning approach for train rescheduling on a single-track railway. Trans.
Res. Part B: Methodological 86 (2016), 250–267.

[29] N. Shinghal. 2005. Rail-Road Competition in Freight Transportation: Price and
Service Issues. Economic and Political Weekly 40, 25 (2005), 2587–2593.

[30] S. Sinha, S. Salsingikar, and S. SenGupta. 2016. An iterative bi-level hierarchical
approach for train scheduling. JRTPM 6, 3 (2016), 183–199.

[31] Hassan Smaoui, Lahcen Zouhri, Sami Kaidi, and Erick Carlier. 2018. Combination
of FEM and CMA-ES algorithm for transmissivity identification in aquifer systems.
Hydrological Processes 32, 2 (2018), 264–277. https://doi.org/10.1002/hyp.11412
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.11412

[32] P. Tormos, A. Lova, F. Barber, L. Ingolotti, M. Abril, and M. Salido. 2008. A ge-
netic algorithm for railway scheduling problems. In Metaheuristics for scheduling
in industrial and manufacturing applications. Springer, 255–276.

[33] S. Whiteson and P. Stone. 2006. Evolutionary function approximation for re-
inforcement learning. Journal of Machine Learning Research 7, May (2006),
877–917.

[34] L. Zhang, Y. Qin, X. Meng, L. Wang, and T. Zhu. 2016. MPSO-Based Model of
Train Operation Adjustment. Procedia Engineering 137 (2016), 114–123.

7

https://doi.org/10.13140/RG.2.2.24477.05601
https://doi.org/10.13140/RG.2.2.24477.05601
https://doi.org/10.1002/hyp.11412
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.11412

	Abstract
	1 Introduction
	2 Related Work
	3 Task Specification
	3.1 Simulating train movement on railway lines
	3.2 Logic for individual train decisions
	3.3 Objective function
	3.4 Benchmark railway lines

	4 Training with Policy Search
	4.1 Initialisation using imitation learning
	4.2 Using CMA-ES for policy search

	5 Results
	6 Conclusion
	References

