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ABSTRACT
The challenge of developing powerful and general Reinforcement

Learning (RL) agents has received increasing attention in recent

years. Much of this effort has focused on the single-agent setting, in

which an agent maximizes a predefined extrinsic reward function.

However, a long-term question inevitably arises: how will such

independent agents cooperate when they are continually learning

and acting in a shared multi-agent environment? Observing that

humans often provide incentives to influence others’ behavior, we

propose to equip each RL agent in a multi-agent environment with

the ability to give rewards directly to other agents, via a learned

incentive function. Each agent learns the incentive function by con-

sidering how the given incentives affect its own extrinsic objective,

through the learning of agents who receive incentives. We demon-

strate in experiments that such agents significantly outperform

policy gradient agents and opponent-shaping agents in a small yet

challenging general-sum Markov game. Our work points toward a

more general research program of endowing agents with expanded

capabilities for incentivizing others to ensure the common good in

a multi-agent future.
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1 INTRODUCTION
Reinforcement Learning (RL) [31] agents are achieving increasing

success on an expanding set of tasks [3, 15, 21, 26, 34]. While much

effort is devoted to single-agent environments and fully-cooperative

games, there is a possible future in which large numbers of RL

agents with imperfectly-aligned objectives must interact and con-

tinually learn in a shared multi-agent environment. Excluding the

option of training a fully centralized policy using a global reward,

which does not scale to large populations, there is no guarantee

that groups of agents can achieve high individual and collective

return [23]. Moreover, agents in many real world situations with

mixed motives may face a social dilemma, wherein mutual selfish

behavior leads to low individual and total utility, due to fear of being

exploited or greed to exploit others [17, 18, 24]. Whether, and how,

independent learning and acting agents can achieve cooperation

while optimizing their own objectives remains an open question.

The conundrum of attaining multi-agent cooperation with decen-

tralized
1
training requires us to go beyond the restrictive mindset
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We take decentralized to mean that no agent is designed with an objective to maximize

collective performance, and that agents optimize separate sets of policy parameters.

that the collection of predefined individual objectives cannot be

changed by the agents themselves. We draw inspiration from the

observation that this fundamental multi-agent problem arises at

multiple scales of human activity and, crucially, that it can be suc-

cessfully resolved when agents give the right incentives to alter
the objective of other agents, in such a way that the recipients’

behavior changes for everyone’s advantage. Indeed, a significant

amount of individual, group, and international effort is expended

on creating effective incentives or sanctions to shape the behav-

ior of other individuals, social groups, and nations [4, 5, 33]. The

rich body of work on understanding the game-theoretic aspects of

side payments [10, 12, 14] attests to the importance of inter-agent

incentivization in the real world.

Translated to the framework of Markov games for multi-agent

reinforcement learning (MARL) [20], the key insight is to remove

the constraints of an immutable reward function. Instead, we allow

agents to learn an incentive function that gives rewards to other

learning agents, who now themselves learn using the combina-

tion of received incentives and predefined extrinsic rewards. The

learning problem for a generic agent, who both gives and receives

incentives, becomes two-fold: learn a behavioral policy that opti-

mizes the total extrinsic rewards and incentives it receives, and

learn a reward function to give the correct incentives to optimize its

original extrinsic objective. While the emergence of incentives in

nature may have an evolutionary explanation [11], human societies

contain ubiquitous examples of learnt incentivization and we focus

on the learning viewpoint in this work.

Learning to incentivize other learning agents expands the ca-

pabilities of agents and poses significant new research challenges

for multi-agent learning. The effect of incentives manifests in the

recipient’s behavior only after a sufficient number of learning up-

dates by the recipient. Hence, in an episodic Markov game setting,

a reward-giver may not receive any feedback within an episode,

much less an immediate feedback, on whether a given reward is

beneficial to its own extrinsic objective. This implies that merely

augmenting an agent’s action space with a “give-reward” action and

falling back to conventional reinforcement learning is not the best

approach. Furthermore, mistakes in giving rewards has long-term

consequences on other learning agents’ behavior, and it may be

hard to steer the recipient back to the right behavior.

As a first step toward addressing these challenges, we make the

following technical and experimental contributions. (1) We create

an agent that learns an incentive function to reward other learning

agents by explicitly accounting for the impact of given incentives

on its own performance, through the learning of recipients. Each

agent learns two components: a standard policy that is optimized



start lever0 0
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(a) Agent A2 is penalized for any change of
state, if not receiving reward from A1.

start door-1 -1

-1

-1

(b) Agent A1 is penalized at every step if
A2 does not pull the lever.

start door-1 +10

+10

-1

(c) A1 get +10 and terminates the episode
by going to the door if A2 pulls the lever.

Figure 1: An “escape room” game involving two agents, A1 and A2. (a) In the absence of incentives, A2’s optimal policy is to
stay at the start state and not pull the lever. (b) Hence A1 cannot exit the door and is penalized at every step. (c) A1 can receive
positive reward if it learns to incentivize A2 to pull the lever. Giving incentives is not an action depicted here.

via RL, and a new vector-valued incentive function that is optimized

directly by gradient ascent on its extrinsic objective. (2) Working

with the concrete case where agents update their policies via policy

gradient, we derive the gradient of an agent’s extrinsic objective

with respect to the parameters of its learned incentive function. (3)

We create a simple synthetic Markov game, which standard policy-

gradient agents, even if augmented with reward-giving actions,

were unable to solve, and on which existing opponent-shaping

agents do not consistently achieve optimal performance. In contrast,

our agent approaches the global optimum in both the asymmetric

case where only one agent gives rewards, and the symmetric case

where all agents give and receive rewards.

2 RELATEDWORK
Learning to incentivize other learning agents is motivated by the

problem of cooperation among independent learning agents in

intertemporal social dilemmas (ISDs) [17], in which defection is

preferable to individuals in the short term but mutual defection

leads to low collective performance in the long term. While algo-

rithms for fully-cooperative MARL have shown promise in complex

games [9, 25, 29, 37], ISDs have mixed motives, and cannot canon-

ically be reduced to fully cooperative problems. Previous work

showed that independent agents who employ intrinsic rewards are
able to improve collective performance in ISDs [6, 13, 35]. These

intrinsic rewards are either hand-crafted or slowly evolved and

are used by each agent to modulate its own extrinsic reward. In

contrast, the incentive function in our work is learned by a reward-

giver on the same timescale as policy learning and is given to, and

maximized by, other agents.
Learning to incentivize is complementary to existing work on op-

ponent shaping in MARL, in which an agent learns to influence the

learning update of other agents for its own benefit. While Learning

with Opponent Learning Awareness (LOLA) [8] and Stable Oppo-

nent Shaping (SOS) [19] only influences other agents via actions

taken by its policy, whose effects manifest through the Markov

game state transition, our proposed agent exerts direct influence

via an incentive function, which is distinct from its policy andwhich

explicitly affects the recipient agent’s learning update. Hence the

need to influence other agents does not restrict a reward-giver’s

policy, potentially allowing for more flexible and stable shaping.

We describe the mathematical differences between our method

and LOLA in Section 4.1, and experimentally compare with LOLA

agents augmented with reward-giving actions.

Our work is related to a growing collection of work onmodifying

or learning a reward function that is in turn maximized by another

learning algorithm [2, 28, 38]. Previous work employed a central-

ized operator on utilities for 2-player games with side payments

[28], and employed an additional centralized agent who directly

optimizes collective reward by giving extra rewards to players in

a 2-player matrix game [2]. In contrast, we work in the general

N -player setting where the collective performance cannot be op-

timized directly and agents themselves must learn to incentivize

other agents. The technical approach in our work is inspired by

online cross validation [30], which is employed to optimize hyper-

parameters in meta-gradient RL [36], and by the optimal reward

framework [27], in which a single agent learns an intrinsic reward

by ascending the gradient of its own extrinsic objective [38].

3 THE ESCAPE ROOM GAME
We may illustrate the benefits of incentivization with a simple

example. The 2-player Escape Room game is a finite state finite

action Markov game with individual extrinsic rewards between two

learning agents (A1 and A2) as described in Figure 1. A1 gets +10

extrinsic reward for exiting a door and ending the game (Figure 1c),

but the door can only be opened when A2 pulls a lever; otherwise,

A1 is penalized at every time step (Figure 1b). However, the extrinsic

reward for A2 discourages it from taking the cooperative action

(Figure 1a). If both A1 and A2 are standard independent RL agents

who only optimize their individual rewards, A2 converges to a

policy of not moving, which traps A1 at the global minimum, as

we show in Section 6.

Suppose we augment A1’s action space with an additional “give

reward” action—we allow it to give +2 reward to A2, at a cost −2 to

itself—and let it observe A2’s chosen action prior to taking its own

action. In principle, assuming that A2 conducts sufficient explo-

ration, an intelligent reward-giver can learn to use the +2 reward to

incentivize A2 to pull the lever. However, we hypothesize and find

evidence in experiments that standard RL faces significant difficulty

in learning to incentivize correctly. RL optimizes the expected cu-

mulative reward within an episode, but the value of a reward-giving

action can only be measured after many episodes of the recipient’s

learning. Instead, we need an agent that explicitly accounts for the

impact of given rewards on the recipient’s learning, and the effect

of such learning on its own future performance.

2



4 LEARNING TO INCENTIVIZE OTHERS
We design Learning to Incentivize Others (LIO), an agent that learns

an incentive function by explicitly accounting for the impact of

given rewards on its own extrinsic objective, through the learning

of reward recipients. We build on the idea of online cross-validation

[32], to reflect the fact that an incentive has measurable effect only

after a recipient’s learning update step. For clarity of exposition,

we work with the ideal limit where agents have a perfect model

of other agents’ parameters and gradients; this could be weakened

in practice by having each agent estimate a model of other agent’s

behavior. We formally present the general case where all N agents

are LIO agents; see Algorithm 1.

Consider a population of N agents, each indexed by i ∈ [N ] :=
{1, . . . ,N }, who can give and receive rewards from one another.

For clarity, we use index i when referring to the reward-giving

part of an agent, and we use j for the part of an agent that learns

from received rewards. Let −i denote a collection of all indices

except i . Let a and π denote the joint action and the joint policy

over all agents, respectively. Let oi := Oi (s) ∈ O denote the local

observation of agent i at global state s .
A reward-giver agent i optimizes a vector-valued incentive func-

tion rηi : O × A
−i 7→ RN−1, parameterized by ηi ∈ Rn , that maps

its own observation oi and all other agents’ actions a−i to a vector

of rewards for the other N − 1 agents. We do not allow an agent to

reward itself. Let r
j
ηi denote the reward that agent i gives to agent

j , i.e., the j-th component of rηi . Note that rηi is neither part of the
agent’s policy nor a separate policy. It is a deterministic function

that is learned via direct gradient ascent on the agent’s own extrin-

sic objective, involving its effect on all other agents’ policies (as we

elaborate below), instead of via RL. These incentive function up-

dates are separate from the agent’s policy updates, which we chose

to be policy gradient ascent. Hence we are not merely augmenting

the agent’s action space with a “give-reward” action.

At each time step t , each recipient j receives a total reward

r j (st , at ,η−j ) := r j ,env(st , at ) +
∑
i,j

r
j
ηi (o

i
t ,a
−i
t ) , (1)

where r j ,env denotes agent j’s extrinsic reward. Each agent j opti-
mizes its policy π j , parameterized by θ j ∈ Rm , to maximize

Jpolicy(θ j ,η−j ) := Eπ

[ T∑
t=0

γ t r j (st , at ,η−j )

]
. (2)

Upon experiencing a trajectory τ j := (s0, a0, r
j
0
, . . . , sT ), the recipi-

ent carries out an update

ˆθ j ← θ j + β f (τ , θ j ,η−j ) (3)

that adjusts parameters θ j ∈ Rm of its policy π j (Algorithm 1, lines

4-5). Assuming policy gradient learners, the update function is

f (τ j , θ j ,η−j ) =
T∑
t=0
∇θ j logπ

j (a
j
t |o

j
t )G

j
t (τ

j
;η−j ) , (4)

where the return is G
j
t (τ

j ,η−j ) =
∑T
l=t γ

l−t r j (sl , al ,η−j ).
After all agents have updated their policies to π̂ j , each of which is

parameterized by new
ˆθ j , they generate new trajectories τ̂ j . These

Algorithm 1 Learning to Incentivize Others

1: procedure Train LIO agents

2: Initialize all agents’ policy parametersθ i , incentive function
parameters ηi , exploration rate ϵ

3: for each iteration do
4: Generate an episode trajectory τ using θ and η

5: For reward-recipients j, update ˆθ j using (3)

6: Generate new episode trajectory τ̂ using new
ˆθ

7: For reward-givers i , update η̂i by gradient ascent on (5)

8: ϵ ← ϵ − ϵstep if ϵ > ϵ
end

9: θ i ← ˆθ i , ηi ← η̂i

10: end for
11: end procedure

trajectories are used by the reward-givers i to update the individ-

ual incentive function parameters ηi to maximize their individual

expected extrinsic return (Algorithm 1, lines 6-7). We define the

objective function for the incentive function of each agent i as

J i (τ̂ i , τ i , ˆθ ,ηi ) := Eπ̂

[ T∑
t=0

γ t r̂ i ,envt

]
− αL(ηi , τ i ) , (5)

where the first term is the expected return for the reward-giver in

the second trajectory τ̂ i , and the second term is a regularizer based

on the rewards given in the first trajectory τ i :2

L(ηi , τ i ) :=
∑

(oit ,a
−i
t )∈τ i

γ t ∥rηi (o
i
t ,a
−i
t )∥

2

2
. (6)

Letting J i (τ̂ i , ˆθ ) denote the first term in (5), the gradient w.r.t. ηi is:

∇ηi J
i (τ̂ , ˆθ ) =

∑
j,i
(∇ηi

ˆθ j )T ∇
ˆθ j J

i (τ̂ i , ˆθ ) . (7)

The first factor of each summation follows directly from (3) and (4):

∇ηi
ˆθ j = α

T∑
t=0
∇θ j logπ

j (a
j
t |o

j
t )

(
∇ηiG

j
t (τ

j
;η−j )

)T
(8)

Note that in contrast to Xu et al. [36], (3) does not contain recur-

sive dependence of θ j on ηi because θ j is a function of incentives

received during previous episodes, not on those received during the

trajectory τ i . The second factor in (7) is

∇
ˆθ j J

i (τ̂ i , ˆθ ) = Eπ̂

[
∇

ˆθ j log π̂
j (âj |ôj )Qi ,π̂ (ŝ, â)

]
(9)

The derivation (omitted) is similar to that for policy gradient [32].

In practice, to avoid manually computing the matrix-vector product

in (7), one can define the loss

Loss(ηi , τ̂ i ) := −
∑
j,i

T∑
t=0

logπ
ˆθ j (â

j
t |ô

j
t )Ĝ

i
t (10)

and directly minimize it via automatic differentiation [1]. Crucially,

ˆθ j must preserve the functional dependence of the policy update

step (4) on ηi within the same computation graph. The derivation

(omitted) is again similar to policy gradient, except that the gradient

is w.r.t. ηi , and all the
ˆθ j for j , i have dependence on ηi .

2
(6) accounts for the fact that incentives should carry a cost to the reward-giver.

Another option is to include the cost in r i ,env , but this is difficult to optimize via (7).

3



Our method can be seen as part of the paradigm of centralized

training for decentralized execution [7, 22]. The agents and their

objectives are fully decentralized, for they share no parameters and

do not have knowledge of others’ rewards; however, we do assume

that each agent has access to parameter gradients of the others

to learn the incentive function. In this sense, the centralization of

our training may be described as the common knowledge that all

agents are RL agents who learn from rewards. Note that by learning

models of other agents we could implement our algorithm in a fully

decentralized way, an extension we leave to future work.

4.1 Relation to opponent shaping via actions
LIO conducts a particular form of opponent shaping via the in-

centive function. This resembles LOLA [8], but there are key algo-

rithmic differences. Firstly, LIO’s incentive function can be viewed

as a pseudo-action channel that exerts influence on other agents,

but its parameters are trained separately from policy parameters,

unlike LOLA where opponent shaping is done solely via the policy.

Secondly, the LOLA gradient correction for agent i is derived from

∇θ i J
i (θ i , θ j + ∆θ j ) under Taylor expansion, but LOLA disregards

a term with ∇θ i∇θ j J
i (θ i , θ j ) even though it is non-zero in gen-

eral. In contrast, LIO is constructed from the principle of online

cross-validation [30], rather than Taylor expansion, and hence this

particular mixed derivative is absent—the analogue for LIO would

be ∇ηi∇θ j J
i (θ i , θ j ), which is zero because incentive parameters ηi

affect all agents except agent i . Thirdly, LOLA optimizes its objec-

tive assuming one step of opponent learning, before the opponent
actually does so. In contrast, LIO updates the incentive function

after recipients carry out policy updates using received incentives.

This gives LIO a more accurate measurement of the impact of given

incentives, which reduces variance and increases performance, as

we discuss in Section 6.1. On the other hand, LIO can be viewed as

more restrictive than LOLA, as it assumes the possibility of adding a

differentiable reward channel to the environment. Nevertheless, this

modification can readily be made in many practical applications.

5 EXPERIMENTAL SETUP
Our experiments demonstrate that LIO agents are able to reach

near-optimal individual performance by incentivizing other agents

in cooperation problems with conflicting individual and group

utilities. We define the environment in Section 5.1 and describe the

implementation of our method and baselines in Section 5.2.

5.1 The N -Player Escape Room game
We work with an N -player episodic Escape Room game in which

some agent(s) must incur extrinsic penalties in order for other

agent(s) to receive positive extrinsic reward. Each episode has a

maximum of 5 time steps. For a fair comparison of all methods that

allow inter-agent incentivization, the game accounts for all given

rewards as a cost to the reward-giver when measuring performance.

The first variant is the asymmetric 2-player Markov game shown

in Figure 1 and described in Section 3. The global optimum com-

bined reward is +9, and it is impossible for A2 to get positive ex-

trinsic reward. Due to the asymmetry, A1 is the reward-giver and

A2 is the reward recipient for methods that allow incentivization.

Each agent observes both agents’ positions, and can move between

startlever door

Figure 2: If fewer thanM agents pull the lever, which incurs a
cost of −1 if they are not already at the lever, then all agents
receive −1 for changing their current position. Otherwise,
the agent(s) who is not pulling the lever can get +10 by going
to the door and end the episode.

the two states available to itself. We allow A1 to observe A2’s cur-

rent action before choosing its own action, which is necessary for

methods that learn to reward A2’s cooperative actions. We use a

standard policy gradient for A2 unless otherwise specified.

The second variant is a symmetric N -player game shown in

Figure 2. For a given parameterM < N , if fewer thanM agents pull

the lever, then all agents receive −1 extrinsic penalty for moving.

Otherwise, the remaining N −M agents can move to the door to get

+10 extrinsic reward and terminate the episode. In principle, any

agent can receive positive reward, as long as some other agent(s)

cooperate. Hence, for methods that allow incentivization, every

agent is both a reward giver and recipient. Each agent observes all

agents’ positions and can move among the three available states.

At every time step, all agents commit to and disclose their chosen

actions, compute the incentives based on their observations of state

and others’ actions (only for methods that allow incentivization),

and receive the sum of extrinsic rewards and incentives (if any).

We experiment with the case N = 2,M = 1 and N = 3,M = 2. For

easier symmetry-breaking in the 3-agent case, we use uniformly

random initialization for agents’ starting location. Within each

method (Section 5.2), all agents have the same implementation

without sharing parameters.

5.2 Agent implementation and baselines
We use multi-layer perceptrons for all function approximation. The

policy network has two ReLU layers with 64 and 32 units each, and

a softmax output layer with size equal to the number of actions. The

learned reward function in LIO has outputs bounded in [0,Rmax]:

it has two ReLU layers with 64 and 16 units each; the input is

the concatenation of the agent’s observation and all other agents’

chosen action; the output layer has sigmoid activation and size equal

to the total number of agents; each output node i is interpreted as

the real-valued reward given to agent with index i in the game (we

zero-out the value it gives to itself); the output is scaled element-

wise by multiplier Rmax = 2, since intuitively the incentive must

overcome the −1 extrinsic penalty incurred for the cooperative

action. We use on-policy learning with policy gradient for each

agent, using stochastic gradient descent with learning rate 10
−3

for

policy parameters and the Adam optimizer [16] with initial learning

rate 10
−4

for the incentive function parameters in LIO, which is

regularized by (6) with coefficient α = 10
−3
. To ensure the reward

recipient performs sufficient exploration for the reward-giver to

learn the effect of given rewards, we include an exploration lower

bound ϵ such that π̃ (a |s) = (1 − ϵ)π (a |s) + ϵ/|A|, with ϵ decaying

linearly from ϵstart = 1.0 to ϵ
end
= 0.1 by 1000 episodes. We include

4
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Figure 3: Results in asymmetric 2-player escape room game. (a) LIO (paired with PG) converges rapidly to global optimum,
2-TS (paired with tabular Q-learner) converges slower, while policy gradient baselines could not learn to cooperate. (b) Two PG
agents cannot cooperate, as A2 converges to “do-nothing”. (c) A LIO agent (A1) attains near-optimum reward by incentivizing
a PG agent (A2). (d) 1-episode LIO has larger variance and lower performance. Normalization factors are 1/10 (A1) and 1/2 (A2).

an entropy regularization with coefficient 0.01, and use discount

factor γ = 0.99.

Baselines. The first baseline is independent policy gradient

for all agents, labeled PG, using the same architecture and hy-

perparameters as the policy part of LIO as described earlier. Sec-

ond, we augment policy gradient with reward-giving actions, la-

beled PG-rewards, whereby the augmented action space is now

A × {no-op, give-reward}. As reward-giving is a discrete action in

this baseline, we try reward values in the set {2, 1.5, 1.1}. Giving

reward incurs an extrinsic cost equal to the value given.
3
Next, we

run LOLA with the same augmented action space as PG-rewards.

Finally, we create a two-timescale method, labeled 2-TS. A 2-TS

agent has the same augmented action space as the PG-rewards base-

line, except that it learns over a longer time horizon than the reward

recipient. Each “epoch” for the 2-TS agent spans multiple regular

episodes of the recipient, during which the 2-TS agent executes a

fixed policy. The 2-TS agent only caries out a learning update using

a final terminal reward, which is the average extrinsic rewards it

gets during test episodes that are conducted at the end of the epoch.
Performance on test episodes serve as a measure of whether cor-

rect reward-giving actions were taken to influence the recipient’s

learning during the epoch. To the best of our knowledge, 2-TS is a

novel baseline but has key limitations: the use of two timescales

only applies to the asymmetric 2-player game, and requires fast

learning by the reward-recipient, chosen to be a tabular Q-learner,

to avoid intractably long epochs.

6 RESULTS
We find that LIO agents are able to reach near-optimal collective
performance in both the asymmetric and symmetric escape room

game, in contrast to the policy gradient baselines that were unable

to show any sign of cooperation. LOLA was able to solve the task

sometimes, but this behavior was not robust across random seeds.

For each experiment result, we report the mean and standard error

across 20 independent runs with different random seeds. Section 6.1

analyzes the result in the asymmetric 2-player case, and Section 6.2

shows the result in the symmetric case for N = 2 and N = 3.

3
Note that LIO uses direct regularization instead of accounting for cost of giving

reward in the extrinsic reward. The comparison to baselines is fair as we enforce that

given rewards is a cost during evaluation for all methods.

6.1 Asymmetric game
Figure 3 shows the sum of both agents’ rewards for all methods

on the asymmetric 2-player game, as well as agent-specific per-

formance for policy gradient and LIO, across training episodes. A

LIO reward-giver agent paired with a policy gradient recipient con-

verges rapidly to a combined return near 9.0 (Figure 3a), which is

the global maximum, while both PG and PG-rewards could not es-

cape the global minimum for A1. LOLA paired with a PG recipient

found the cooperative solution in two out of 20 runs; this suggests

the difficulty of using a fixed incentive value to conduct opponent

shaping via discrete actions. The 2-TS method is able to improve

combined return but does so much more gradually than LIO, be-

cause an epoch consists of many base episodes and it depends on a

highly delayed terminal reward. Figure 3b for two PG agents shows

that A2 converges to the policy of not moving (reward of 0), which

results in A1 incurring penalties at every time step. In contrast,

Figure 3c verifies that A1 (LIO) receives the large extrinsic reward

(scaled by 1/10) for exiting the door, while A2 (PG) has average

normalized reward above -0.5 (scaled by 1/2), indicating that it is

receiving incentives from A1. Average reward of A2 (PG) is below

0 because incentives given by A1 need not exceed 1 continually

during training—once A2’s policy is biased toward the coopera-

tive action in early episodes, its decaying exploration rate means

that it may not revert to staying put even when incentives do not

overcome the penalty for moving. Figure 3d shows results on a

one-episode version of LIO where the same episode is used for both

policy update and incentive function updates, with importance

sampling corrections. This version performs significantly lower for

A1 and gives more incentives than is necessary to encourage A2 to

move. It demonstrates the benefit of learning the reward function

using a separate episode from that in which it is applied.

6.2 Symmetric game
Figures 4 and 5 show that groups of LIO agents are able to discover

a division of labor in both the 2-player and 3-player cases, whereby

some agent(s) cooperate by pulling the lever to allow another agent

to exit the door, such that the collective return approaches the opti-

mal value (9 for the 2-player case, 8 for the 3-player case). We found

that uniform randomization of agents’ initial position was helpful

in breaking the symmetry among three LIO agents. As expected,
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Figure 4: Results in symmetric 2-player escape room game. (a) Two LIO agents converge near the global optimum, while policy
gradient agents (with and without reward-giving actions) do not. (b) Training dynamics of two LIO agents. (c-d) LIO agents
cooperate by giving and receiving rewards at the correct states (mean and standard error of 100 test episodes).
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Figure 5: Results in symmetric 3-player escape room game. Two agents must pull the lever for the door to open. (a) Three LIO
agents converge near the global optimum (8); PG agents do not. (b) Agent 3 exits the door by giving incentives to Agents 1 and 2
(one run). (c-d) LIO agents give and receive rewards at mostly the correct states (mean and standard error of 100 test episodes).

both PG and PG-rewards were unable to find a cooperative solution.

LOLA sometimes successfully influence the learning of another

agent to solve the game, but exhibits high variance across inde-

pendent runs. For the two-player case, Figure 4c verifies that only

agents who go to the door give non-zero rewards, which shows the

effect of the regularization term in (6). Moreover, Figure 4d shows

that rewards are given correctly—only agents who pull the lever

receive non-zero rewards. Figure 4b shows total reward, counts of

“pull-lever” and “go to door” actions, total received rewards, and

total given rewards across one particular training run. Here, A1

becomes the reward-giver and A2 the reward recipient. Somewhat

surprisingly, it is not always necessary for Agent 1 to give rewards.

The fact that LIO models the learning updates of recipients may

allow it to find that reward-giving is unnecessary during some

episodes when the recipient’s policy is sufficiently biased toward

cooperation. However, for the 3-player case, Figures 5c and 5d show

that LIO makes mistakes in some runs, where agents who stay at

the start state received rewards from others, while agents who pull

the lever gave rewards to others. This suggests room for further

improvement. Figure 5b shows an example run in which Agents 1

and 2 learn to cooperate to pull the lever and receive rewards from

Agent 3, who exits the door.

Overall, the consistent failure of PG-rewards even in this seem-

ingly simple game supports the intuition that the standard RL frame-

work is not well suited to the task of learning to incentivize, as the

effect of given rewards manifests only in future episodes. LOLA

succeeds sometimes but with high variance, as it does not benefit

from the stabilizing effects of online cross-validation and separation

of the incentivization channel from regular actions. Results of 2-TS

shows that learning over a longer horizon is a feasible albeit slow

and indirect approach, while the significantly better performance

of LIO shows the advantage of directly accounting for the impact

of giving incentives on other learning agents.

7 CONCLUSION
We created Learning to Incentivize Others (LIO), an agent who

learns to give rewards directly to other reinforcement learning

agents. A LIO agent learns an incentive function by explicitly ac-

counting for the impact of given rewards on its own extrinsic objec-

tive, through the learning updates of reward recipients. In multiple

variants of a deceptively simple synthetic escape room game, where

policy gradient agents cannot achieve cooperation even when aug-

mented with reward-giving actions, we show that LIO agents paired

with either policy gradient or other LIO agents are able discover a

division of labor, whereby a LIO agent correctly incentivizes other

agents to overcome extrinsic penalties to achieve optimum collec-

tive performance. In future work, we will scale up experiments

to more complex domains such as intertemporal social dilemmas

[13, 35] and take further steps toward a fully-decentralized imple-

mentation of LIO.
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