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ABSTRACT

What goals should amulti-goal reinforcement learning agent pursue

during training in long-horizon tasks? When the desired (test time)

goal distribution is too distant to offer a useful learning signal, we

argue that the agent should not pursue unobtainable goals. Instead,

it should set its own intrinsic goals that maximize the entropy of

the historical achieved goal distribution. We propose to optimize

this objective by having the agent pursue past achieved goals in

sparsely explored areas of the goal space, which focuses exploration

on the frontier of the achievable goal set. We show that our strategy

achieves an order of magnitude better sample efficiency than the

prior state of the art on long-horizon multi-goal tasks including

maze navigation and block stacking.
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1 INTRODUCTION

Multi-goal reinforcement learning (RL) agents [25, 47, 53] learn

goal-conditioned behaviors that can achieve and generalize across

a range of different goals. Multi-goal RL forms a core component of

hierarchical agents [35, 59], and has been shown to allow unsuper-

vised agents to learn useful skills for downstream tasks [15, 21, 64].

Recent advances in goal relabeling [2] have made learning possible

in complex, sparse-reward environments whose goal spaces are

either dense in the initial state distribution [47] or structured as

a curriculum [9]. But learning without demonstrations in sparse-

reward, long-horizon environments remains a challenge [36, 62],

as learning signal decreases exponentially with the horizon [39].

In this paper, we improve upon existing approaches to intrin-

sic goal setting and show how multi-goal agents can form an au-

tomatic behavioural goal curriculum that allows them to master
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long-horizon, sparse reward tasks. We begin with an algorithmic

framework for goal-seeking agents that contextualizes prior work

[4, 17, 37, 48, 64] and argue that past goal selection mechanisms are

not well suited for long-horizon, sparse reward tasks (Section 2).

By framing the long-horizon goal seeking task as optimizing an ini-

tially ill-conditioned distribution matching objective [30], we arrive

at our unsupervised Maximum Entropy Goal Achievement (MEGA)

objective, which maximizes the entropy of the past achieved goal

set. This early unsupervised objective is annealed into the original

supervised objective once the latter becomes tractable (Section 3).

We propose a practical algorithmic approach to maximizing

entropy, which pursues past achieved goals in sparsely explored

areas of the achieved goal distribution, as measured by a learned

density model. The agent revisits and explores around these areas,

pushing the frontier of achieved goals forward [14]. This strategy,

similar in spirit to Baranes & Oudeyer [4] and Florensa et al. [17],

encourages the agent to explore at the edge of its abilities, which

avoids spending environment steps in pursuit of already mastered

or unobtainable goals. When used in combination with hindsight

experience replay and an off-policy learning algorithm, our method

achieves more than an order of magnitude better sample efficiency

than the prior state of the art on difficult exploration tasks, includ-

ing long-horizon mazes and block stacking (Section 4). Finally, we

draw connections between our approach and the empowerment

objective [28, 51] and identify a key difference to prior work: rather

than maximize empowerment on-policy by setting maximally di-

verse goals during training [20, 37, 48, 64], our proposed approach

maximizes it off-policy by setting goals on the frontier of the past

achieved goal set. We conclude with discussion of angles for future

work (Sections 5-6).

2 THE LONG-HORIZON PROBLEM

2.1 Preliminaries

We consider the multi-goal reinforcement learning (RL) setting,

described by a generalized Markov Decision Process (MDP)M =

⟨S,A,T ,G, [pdд]⟩, where S , A, T , and G are the state space, action

space, transition function and goal space, respectively [52, 58] and

pdд is an optional desired goal distribution. In the most general

version of this problem each goal is a tuple д = ⟨Rд ,γд⟩, where Rд :

S → R is a reward function and γд ∈ [0, 1] is a discount factor [60],
so that “solving” goal д ∈ G amounts to finding an optimal policy in
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Desired	(e.g.,	HER) Achieved	(e.g.,	RIG) MEGA	(ours)

, Desired	Goal��� , Achieved	Goal��� , Behaviour	Goal���

Diverse	(e.g.,	DISCERN)

Fig. 1: Illustration of density-based Select mechanisms at start of training, when achieved (paд ) and desired (pdд ) goal distri-
butions are disconnected. HER samples goals from the desired distribution pdд . RIG samples from the achieved distribution

paд . DISCERN and Skew-Fit skew paд to sample diverse achieved goals. Our approach (MEGA) focuses on low density regions

of paд . See Subsection 2.3.

the classical MDPMд = ⟨S,A,T ,Rд ,γд⟩. Although goal-oriented

methods are general and could be applied to dense reward MDPs

(including the standard RL problem, as done by Warde-Farley et al.

[64], among others), we restrict our present attention to the sparse

reward case, where each goal д corresponds to a set of “success”

states, Sд , with Rд : S → {−1, 0} [47] defined as Rд(s) = I{s ∈
Sд}+c . Following Plappert et al., we use base reward c = −1, which
typically leads to more stable training than the more natural c = 0

(see Van Seijen et al. [63] for a possible explanation). We also adopt

the usual form Sд = {s | d(ag(s),д) < ϵ}, where ag : S → G maps

state s to an “achieved goal” ag(s) and d is a metric onG . An agent’s
“achieved goal distribution” paд is the distribution of goals achieved

by states s (i.e., ag(s)) the agent visits (not necessarily the final

state in a trajectory). Note that this may be on-policy (induced

by the current policy) or historical, as we will specify below. The

agent must learn to achieve success and, if the environment is not

episodic, maintain it. In the episodic case, we can think of each

goal д ∈ G as specifying a skill or option o ∈ Ω [15, 59], so that

multi-goal reinforcement learning is closely related to hierarchical

reinforcement learning [35].

A common approach to multi-goal RL, which we adopt, trains a

goal-conditioned state-action value function, Q : S ×A ×G → R,
using an off-policy learning algorithm that can leverage data from

other policies (past and exploratory) to optimize the current policy

[53]. A goal-conditioned policy, π : S ×G → A, is either induced
via greedy action selection [33] or learned using policy gradients.

Noise is added to π during exploration to form exploratory policy

π
explore

. Our continuous control experiments all use the DDPG

algorithm [31], which parameterizes actor and critic separately,

and trains both concurrently using Q-learning for the critic [65],

and deterministic policy gradients [57] for the actor. DDPG uses a

replay buffer to store past experiences, which is then sampled from

to train the actor and critic networks.

2.2 Sparse rewards and the long horizon

problem

Despite the success of vanilla off-policy algorithms in dense-reward

tasks, standard agents learn very slowly—or not at all—in sparse-

reward, goal-conditioned tasks [2]. In order for a vanilla agent to

obtain a positive reward signal and learn about goal д, the agent
must stumble upon д through random exploration while it is trying
to achieve д. Since the chance of this happening when exploring

randomly decreases exponentially with the horizon (“the long hori-

zon problem”) [39], successes are infrequent even for goals that are

relatively close to the initial state, making learning difficult.

One way to ameliorate the long horizon problem is based on the

observation that, regardless of the goal being pursued, (state, action,

next state) transitions are unbiased samples from the environment

dynamics. An agent is therefore free to pair transitions with any

goal and corresponding reward, which allows it to use experiences

gained in pursuit of one goal to learn about other goals (“goal

relabeling”) [25]. Hindsight Experience Replay (HER) [2] is a form

of goal relabeling that relabels experiences with goals that are

achieved later in the same trajectory. For every real experience,

Andrychowicz et al. [2]’s future strategy produces k relabeled

experiences, where the k goals are sampled uniformly from goals

achieved by future states in the same trajectory. This forms an

implicit optimization curriculum, and allows an agent to learn

about any goal д it encounters during exploration.

Note, however, that a HER agent must still encounter д (or goals

sufficiently similar to д) in order to learn about д, and the long

horizon problem persists for goals that are too far removed from

the agent’s initial state distribution. This is illustrated in Figure 2,

and ismost easily understood by considering the tabular case, where

no generalization occurs between a finite set of MDPsMд : since

a learning signal is obtained only when transitioning into s ∈ Sд ,
the agent’s achieved goal distribution must overlap with Sд for

learning to occur. Empirically, this means that DDPG+HER agents

that explore using only action noise or epsilon random actions fail

to solve long-horizon tasks, whose desired goal distribution does not

Fig. 2: Performance of a DDPG+HER agent that must lift a

box to reach goals at increasing heights (3 seeds). As the hori-

zon (desired height) increases, the agent loses the ability to

solve the task in reasonable time. Our approach, OMEGA

(Section 3), is robust to the horizon length. Specific details

in Appendix.
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Algorithm 1 Unified Framework for Multi-goal Agents

function Train(∗arдs ):
Alternate between collecting experience using Rollout and optimiz-

ing the parameters using Optimize.

function Rollout (policy π
explore

, buffer B, ∗arдs ):
g← Select(∗arдs)
s0 ← initial state

for t in 0 . . .T − 1 do
at , st+1 ← execute π

explore
(st , g) in environment

rt ← Reward(st , at , st+1, g)
Store (st , at , st+1, rt , g) in replay buffer B

function Optimize (buffer B, algorithm A, parameters θ ):
Sample mini-batch B = {(s, a, s’, r, g)i }Ni=1 ∼ B
B′ ← Relabel(B, ∗arдs)
Optimize θ using A (e.g., DDPG) and relabeled B′

function Select (∗arдs ):
Returns a behavioural goal for the agent. Examples include the envi-

ronment goal дext, a sample from the buffer of achieved goals Baд
[64], or samples from a generative model such as a GAN [17] or

VAE [37]. Our approach (MEGA) selects previously achieved goals

in sparsely explored areas of the goal space according to a learned

density model.

function Reward (st , at , st+1, g):
Computes the environment reward or a learned reward function

[37, 64].

function Relabel (B, ∗arдs ):
Relabels goals and rewards in minibatch B according to some strat-

egy; e.g., don’t relabel, future, mix future and generated goals [37],

or rfaab (ours).

overlap with the initial state distribution. This includes the original

version of FetchPickAndPlace (with all goals in the air) [2], block

stacking [36], and mazes [62].

2.3 Setting intrinsic goals

We propose to approach the long-horizon problem by ignoring long-

horizon goals: rather than try to achieve unobtainable goals, an

agent can set its own intrinsic goals and slowly expand its domain of

expertise in an unsupervised fashion. This is inspired by a number

of recent papers on unsupervised multi-goal RL, to be described

below. Our main contributions relative to past works are (1) a novel

goal selection mechanism designed to address the long-horizon

problem, and (2) a practical method to anneal initial unsupervised

selection into training on the desired goals.

To capture the differences between various approaches, we present

Algorithm 1, a unifying algorithmic framework formulti-goal agents.

Variations occur in the subprocedures Select, Reward, and Re-

label. The standard HER agent Andrychowicz et al. [2] Selects

the environment goal дext, uses the environment Reward and uses

the future Relabel strategy. Functions used by other agents are

detailed in Appendix A. We assume access to the environment Re-

ward and propose a novel Select strategy—MaxEnt Goal Achieve-

ment (MEGA)—that initially samples goals from low-density re-

gions of the achieved goal distribution. Our approach also leads to

a novel Relabel strategy, rfaab, which samples from Real, Future,

Actual, Achieved, and behavioural goals (detailed in Appendix C).

Prior work also considers intrinsic Select functions. The ap-

proaches used by DISCERN [64], RIG [37] and Skew-Fit [48] select

goals using a model of the past achieved goal distribution. DISCERN

samples from a replay buffer (a non-parametric model), whereas

RIG and Skew-Fit learn and sample from a variational autoencoder

(VAE) [27]. These approaches are illustrated in Figure 1, alongside

HER and MEGA. Prior density-based approaches were not tailored

to the long-horizon problem; e.g., DISCERN was primarily focused

on learning an intrinsic Reward function, and left “the incorpo-

ration of more explicitly instantiated [Select] curricula to future

work.” By contrast, MEGA focuses on the low density, or sparsely

explored, areas of the achieved goal distribution, forming a cur-

riculum that crosses the gap between the initial state distribution

and the desired goal distribution in record time. Although Diverse

sampling (e.g., Skew-Fit) is less biased towards already mastered

areas of the goal space than Achieved sampling (e.g., RIG), we show

in our experiments that it still under-explores relative to MEGA.

MEGA’s focus on the frontier of the achieved goal set makes it

similar to SAGG-RIAC [4], which seeks goals that maximize learn-

ing progress, and Goal GAN [17], which seeks goals of intermediate

difficulty.

3 MAXIMUM ENTROPY GOAL

ACHIEVEMENT

3.1 The MEGA and OMEGA objectives

To motivate the MEGA objective, we frame exploration in episodic,

multi-goal RL with goal relabeling as a distribution matching prob-

lem [30]. We note that the original distribution matching objective

is ill-conditioned in long-horizon problems, which suggests max-

imizing the entropy of the achieved goal distribution (the MEGA

objective). We then show how this can be annealed into the original

objective (the OMEGA objective).

We start by noting that, for a truly off-policy agent, the actual

goals used to produce the agent’s experience do not matter, as

the agent is free to relabel any experience with any goal. This

implies that only the distribution of experience in the agent’s replay

buffer, along with the size of the buffer, matters for effective off-

policy learning. How should an agent influence this distribution

to accumulate useful data for achieving goals from the desired

distribution pdд?
Though we lack a precise characterization of which data is use-

ful, we know that all successful policies for goal д pass through

д, which suggests that useful data for achieving д monotonically

increases with the number of times д is achieved during explo-

ration. Past empirical results, such as the success of Andrychowicz

et al. [2]’s future strategy and the effectiveness of adding expert

demonstrations to the replay buffer [36], support this intuition.

Assuming a relatively fixed initial state distribution and uniformly
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distributed pdд
*
, it follows that the intrinsic goal дt at episode t

should be chosen to bring the agent’s historical achieved goal distri-

bution ptaд closer to the desired distribution pdд . We can formalize

this as seeking дt to minimize the following distribution matching

objective:

J
original

(ptaд) = DKL(pdд ∥ p
t
aд), (1)

where ptaд represents the historical achieved goal distribution in

the agent’s replay buffer after executing its exploratory policy in

pursuit of goal дt . It is worth highlighting that objective (1) is a

forward KL: we seek paд that “covers” pdд [6]. If reversed, it would

always be infinite when pdд and the initial state distribution s0 do
not overlap, since pdд cannot cover s0.

So long as (1) is finite and non-increasing over time, the sup-

port of paд covers pdд and the agent is accumulating data that

can be used to learn about all goals in the desired distribution. In

those multi-goal environments where HER has been successful (e.g.,

FetchPush), this is easily achieved by setting the behavioural goal

distribution pbд to equal pdд and using action space exploration

[47]. In long-horizon tasks, however, the objective (1) is usually

ill-conditioned (even undefined) at the beginning of training when

the supports of pdд and paд do not overlap. While this explains

why HER with action space exploration fails in these tasks, it isn’t

very helpful, as the ill-conditioned objective is difficult to optimize.

Whenpaд does not coverpdд , a natural objective is to expand the
support ofpaд , in order to make the objective (1) finite as fast as pos-

sible. We often lack a useful inductive bias about which direction to

expand the support in; e.g., a naive heuristic like Euclidean distance

in feature space can be misleading due to dead-ends or teleporta-

tion [62], and should not be relied on for exploration. In absence

of a useful inductive bias, it is sensible to expand the support as

fast as possible, in any and all directions as in breadth-first search,

which can be done by maximizing the entropy of the achieved

goal distribution H [paд]. We call this the Maximum Entropy Goal

Achievement (MEGA) objective:

JMEGA(p
t
aд) = −H [p

t
aд], (2)

The hope is that by maximizing H [paд] (minimizing JMEGA), the

agent will follow a natural curriculum, expanding the size of its

achievable goal set until it covers the desired distribution pdд and

objective (1) becomes tractable.

In the unsupervised case, where pdд is not specified, the agent

can stop at the MEGA objective. In the supervised case we would

like the agent to somehow anneal objective (2) into objective (1).

We can do this by approximating (2) using a distribution matching

objective, where the desired distribution is uniform over the current

support:

J̃
MEGA

(ptaд ) = DKL(U(supp(ptaд )) ∥ p
t
aд ). (3)

This is a sensible approximation, as it shares a maximum with (2)

when the uniform distribution overG is obtainable, and encourages

the agent to “cover” the current support of the achieved goal distri-

bution as broadly as possible, so that the diffusion caused by action

space exploration will increase entropy. We may now form the mix-

ture distribution ptα = αpdд + (1 − α)U(supp(p
t
aд)) and state our

*
For diverse initial state distributions, we would need to condition both pdд and paд
on the initial state. For non-uniform pdд , we would likely want to soften the desired

distribution as the marginal benefit of additional data is usually decreasing.

final “OMEGA” objective, which anneals the approximated MEGA

into the original objective:

J
OMEGA

(ptaд ) = DKL(pα ∥ ptaд ). (4)

The last remaining question is, how do we choose α? We would

like α = 0 when paд and pdд are disconnected, and α close to 1

when paд well approximates pdд . One way to achieve this, which

we adopt in our experiments, is to set

α = 1/max(b + DKL(pdд ∥ paд), 1),

where b ≤ 1. The divergence is infinite (α = 0) when paд does not

cover pdд and approaches 0 (α = 1) as paд approaches pdд . Our
experiments use b = −3, which we found sufficient to ensure α = 1

at convergence (with b = 1, we may never have α = 1, since paд is

historical and biased towards the initial state distribution s0).

3.2 Optimizing the MEGA objective

We now consider choosing behavioural goal д̂ ∼ pbд in order to

optimize the MEGA objective (2), as it is the critical component of

(4) for early exploration in long-horizon tasks and general unsuper-

vised goal-seeking. In supervised tasks, the OMEGA objective (4)

can be approximately optimized by instead using the environment

goal with probability α .
We first consider what behavioural goals we would pick if we

had an oracle that could predict the conditional distribution q(д′ | д̂)
of goals д′ that would be achieved by conditioning the policy on д̂.
Then, noting that this may be too difficult to approximate in prac-

tice, we propose a minimum density heuristic that performs well

empirically. The resulting Select functions are shown in Algorithm

2.

Oracle strategy. If we knew the conditional distribution q(д′ | д̂)
of goals д′ that would be achieved by conditioning behaviour on

д̂, we could compute the expected next step MEGA objective as

the expected entropy of the new empirical paд | д′ after sampling

д′ and adding it to our buffer:

JMEGA(paд | д′) = −Eд′∼q(д′ | д̂)H [paд | д′]

=
∑
д′

q(д′ |д̂)
∑
д

paд | д′(д) logpaд | д′(д),

To explicitly compute this objective one must compute both the

new distribution and its entropy for each possible new achieved

goal д′. The following result simplifies matters in the tabular case.

Proofs may be found in Appendix B.

Proposition 1 (Discrete Entropy Gain). Given buffer B with
η = 1

|B |
, maximizing expected next step entropy is equivalent to

maximizing expected point-wise entropy gain ∆H (д′):

д̂∗ = argmax

д̂∈B
Eд′∼q(д′ | д̂)H [paд | д′]

= argmax

д̂∈B
Eд′∼q(д′ | д̂)∆H (д

′),
(5)

where ∆H (д′) = paд(д′) logpaд(д′) −
(paд(д

′) + η) log(paд(д
′) + η).

For most agents η will quickly approach 0 as they accumulate

experience, so that choosing д̂ according to (9) becomes equal (in

the limit) to choosing д̂ to maximize the directional derivative

⟨∇paдH [paд],q(д
′ | д̂) − paд⟩.
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Algorithm 2 O/MEGA Select functions

function OMEGA_Select (env goal дext, bias b , ∗arдs ):
α ← 1/max(b + DKL(pdд ∥ paд ), 1)
if x ∼ U(0, 1) < α then return дext
else return MEGA_Select(∗arдs )

function MEGA_Select (buffer B, num_candidates N ):

Sample N candidates {дi }Ni=1 ∼ B
Eliminate unachievable candidates (see text)

return д̂ = argminдi p̂aд (дi ) (∗)

Proposition 2 (Discrete Entropy Gradient).

lim

η→0

д̂∗ = argmax

д̂∈B
⟨∇paдH [paд ], q(д

′ | д̂) − paд ⟩

= argmax

д̂∈B
DKL(q(д′ | д̂) ∥ paд ) + H [q(д′ | д̂)]

(6)

This provides a nice intuition behind entropy gain exploration:

we seek maximally diverse outcomes (H [q(д′ | д̂)]) that are maxi-

mally different from historical experiences (DKL(q(д
′ | д̂) ∥ paд))—

i.e., exploratory behavior should evenly explore under-explored re-

gions of the state space. By choosing goals to maximize the entropy

gain, an agent effectively performs constrained gradient ascent

[18, 23] on the entropy objective.

Assuming the empirical paд is used to induce (abusing notation)

a density paд with full support, Proposition 2 extends to the con-

tinuous case by taking the functional derivative of the differential

entropy with respect to the variation η(д) = q(д′ | д̂)(д) − paд(д)
(Appendix B).

Minimumdensity approximation. Becausewe do not knowq(д′ | д̂),
we must approximate it with either a learned model or an effec-

tive heuristic. The former solution is difficult, because by the time

there is enough data to make an accurate prediction conditional

on д̂, q(д′ | д̂) will no longer represent a sparsely explored area of

the goal space. While it might be possible to make accurate few-

or zero-shot predictions if an agent accumulates enough data in

a long-lived, continual learning setting with sufficient diversity

for meta-learning [49], in our experiments we find that a simple,

minimum-density approximation, which selects goals that have

minimum density according to a learned density model, is at least

as effective (Appendix D). We can view this approximation as a

special case where the conditional q(д′ | д̂) = 1[д′ = д̂], i.e. that the
agent achieves the behaviour goal.

Proposition 3. If q(д′ |д̂) = 1[д′ = д̂], the discrete entropy gradi-
ent objective simplifies to a minimum density objective:

д̂∗ = argmax

д̂∈B
− log[paд (д̂)]

= argmin

д̂∈B
paд (д̂).

(7)

Ourminimumdensity heuristic (Algorithm 2) fits a densitymodel

to the achieved goals in the buffer to form estimate p̂aд of the his-

torical achieved goal distribution paд and uses a generate and test

strategy [38] that samples N candidate goals {дi }
N
i=1 ∼ B from

the achieved goal buffer (we use N = 100 in our experiments)

and selects the minimum density candidate д̂ = argminдi p̂aд(дi ).

We then adopt a Go Explore [14] style strategy, where the agent

increases its action space exploration once a goal is achieved. In-

tuitively, this heuristic seeks out past achieved goals in sparsely

explored areas, and explores around them, pushing the frontier of

achieved goals forward.

It is important for д̂ to be achievable. If it is not, then q(д′ | д̂)
may be disconnected from д̂, as is the case when the agent pur-

sues unobtainable дext (Figure 2), which undermines the purpose

of the minimum density heuristic. To promote achievability, our

experiments make use of two different mechanisms. First, we only

sample candidate goals from the past achieved goal buffer B. Sec-

ond, we eliminate candidates whose estimated value (according

to the agent’s goal-conditioned Q-function) falls below a dynamic

cutoff, which is set according to agent’s goal achievement percent-

age during exploration. The specifics of this cutoff mechanism may

be found in Appendix C. Neither of these heuristics are core to

our algorithm, and they might be be replaced with, e.g., a genera-

tive model designed to generate achievable goals [17], or a success

predictor that eliminates unachievable candidates.

4 EXPERIMENTS

Having described our objectives and proposed approaches for opti-

mizing them, we turn to evaluating our O/MEGA agents on four

challenging, long-horizon environments that standard DDPG+HER

agents fail to solve. We compare the performance of our algo-

rithms with several goal selection baselines. To gain intuition on

our method, we visualize qualitatively the behaviour goals selected

and quantitatively the estimated entropy of the achieved goal dis-

tribution.

Environments. We consider four environments. In PointMaze
[62], a point must navigate a 2d maze, from the bottom left corner

to the top right corner. In AntMaze [35, 62], an ant must navigate

a U-shaped hallway to reach the target. In FetchPickAndPlace
(hard version) [47], a robotic arm must grasp a box and move it to

the desired location that is at least 20cm in the air. In FetchStack2
[36], a robotic arm must move each of the two blocks into the

desired position, where one of the block rests on top of the other. In

PointMaze and AntMaze goals are 2-dimensional and the agent is

successful if it reaches the goal once. In FetchPickAndPlace and
FetchStack2, goals are 3- and 6-dimensional, respectively, and the

agent must maintain success until the end of the episode for it to

count.

Baselines. We compare MEGA and OMEGA to the three density-

based Select mechanisms shown in Figure 1 above: sampling from

pdд (“HER”), sampling from the historical paд as done approxi-

mately by RIG (“Achieved”), and sampling from a skewed histor-

ical paд that is approximately uniform on its support, as done by

DISCERN and Skew-Fit (“Skewed”). We also compare against non

density-based baselines as follows. PointMaze and AntMaze are the
same environments used by the recent Sibling Rivalry paper [62].

Thus, our results are directly comparable to Figure 3 of their paper,

which tested four algorithms: HER, PPO [56], PPO with intrinsic cu-

riosity [43], and PPO with Sibling Rivalry (PPO+SR). The AntMaze
environment uses the same simulation as the MazeAnt environment

tested in the Goal GAN paper [17], but is four times larger. In Ap-

pendix D, we test MEGA on the smaller maze and obtain an almost
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Fig. 3: Test success on the desired goal distribution, evaluated throughout training, for several behaviour goal selection meth-

ods (3 seeds each). Our methods (MEGA and OMEGA) are the only the methods which are able to solve the tasks with highest

sample efficiency. In FetchStack2 we see that OMEGA’s eventual focus on the desired goal distribution is necessary for long

run stability.
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Fig. 4: Visualization of behavioural (top) and terminal achieved (bottom) goals in PointMaze, colour-coded for over the course

of training for several behavioural goal sampling methods. Only our methods reach the desired goal area in top right hand

corner in approximately 2000 episodes, beating the previous state of the art [62] by almost 2 orders of magnitude (100 times).

1000x increase in sample efficiency as compared to Goal GAN and

the Goal GAN implementation of SAGG-RIAC [4]. Results are not

directly comparable as Goal GAN uses an on-policy TRPO base [55],

which is very sample inefficient relative to our off-policy DDPG

base. Thus, we adapt the Goal GAN discriminator to our setting

by training a success predictor to identify goals of intermediate

difficulty (Appendix C) (“GoalDisc”). Finally, we compare against a

minimum Q heuristic, which selects distant goals [22] (“MinQ”).

We note a few things before moving on. First, Sibling Rivalry

[62] is the only prior work that directly addresses the long-horizon,

sparse reward problem (without imitation learning). Other base-

lines were motivated by and tested on other problems. Second, the

generative parts of Goal GAN and RIG are orthogonal to our work,

and could be combined with MEGA-style generate-and-test selec-

tion, as we noted above in Section 3.2. We adopted the generative

mechanism of DISCERN (sampling from a buffer) as it is simple and

has a built-in bias toward achievable samples. For a fair compar-

ison, all of our implemented baselines use the same buffer-based

generative model and benefit from our base DDPG+HER imple-

mentation (Appendix C). The key difference between MEGA and

our implemented baselines is the Select mechanism (line (∗) of

Algorithm 2).

Main Results. Our main results, shown in Figure 3 clearly demon-

strate the advantage of minimum density sampling. We confirm

that desired goal sampling (HER) is unable to solve the tasks, and ob-

serve that Achieved and Diverse goal sampling fail to place enough

focus on the frontier of the achieved goal distribution to bridge

the gap between the initial state and desired goal distributions. On

PointMaze, none of the baselines were able to solve the environ-

ment within 1 million steps. The best performing algorithm from

Trott et al. [62] is PPO+SR, which solves PointMaze to 90% success

in approximately 7.5 million time steps (O/MEGA is almost 100

times faster). On AntMaze, only MEGA, OMEGA and the GoalDisc

are able to solve the environment. The best performing algorithm

from Trott et al. [62] is hierarchical PPO+SR, which solves AntMaze
to 90% success in approximately 25 million time steps (O/MEGA is

roughly 10 times faster). On a maze that is four times smaller, Flo-

rensa et al. [17] tested four algorithms, including SAGG-RIAC [4],

which was implemented, along with Goal GAN, using a TRPO base.

Their best performing result achieves 71% coverage of the maze in

about 175 million time steps (O/MEGA is roughly 100 times faster

on a larger maze). O/MEGA also demonstrates that FetchStack2
can be solved from scratch, without expert demonstrations [13, 36]

or a task curriculum [9].

Maximizing Entropy. In Figure 5 (top), we observe that our ap-

proach increases the empirical entropy of the achieved goal buffer

(the MEGA objective) much faster than other goal sampling meth-

ods. MEGA and OMEGA rapidly increase the entropy and begin to

succeed with respect to the desired goals as the maximum entropy

is reached. As OMEGA begins to shift towards sampling mainly

from the desired goal distribution (Figure 5 (bottom)), the entropy

declines as desired goal trajectories become over represented. We

observe that the intermediate difficulty heuristic is a good optimizer

of the MEGA objective on AntMaze, likely due to the linear struc-

ture of the environment. This explains its comparable performance

to MEGA.
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Fig. 5: Top: Entropy of the achieved goal buffer for Pointmaze
(left) and Antmaze (right) over course of training, estimated

using a Kernel Density Estimator. O/MEGA expand the en-

tropy much faster than the baselines. Bottom: α computed

by OMEGA, which transitions from intrinsic to extrinsic

goals.

Visualization of Achieved Goals. To gain intuition for how our

method compares to the baselines, we visualize the terminal achieved

goal at the end of the episodes throughout the training for PointMaze
in Figure 4. A corresponding figure for AntMaze can be found in

Appendix E. Both MEGA and OMEGA set goals that spread out-

ward from the starting location as training progresses, akin to a

breadth-first search, with OMEGA eventually transitioning to goals

from the desired goal distribution in the top right corner. Diverse

sampling maintains a fairly uniform distribution at each iteration,

but explores slowly as most goals are sampled from the interior of

the support instead of the frontier. Achieved sampling oversamples

goals near the starting location and suffers from a “rich get richer”

problem. Difficulty-based GoalDisc and distance-based MinQ sam-

pling explore deeply in certain directions, akin to a depth-first

search, but ignore easier/closer goals that can uncover new paths.

5 OTHER RELATEDWORK

Curiosity. Maximizing entropy in the goal space is closely related

to general RL (not multi-goal) algorithms that seek to maximize

entropy in the state space [23, 30] or grant the agent additional

reward based on some measure of novelty, surprise or learning

progress [5, 8, 29, 32, 41, 43, 54, 61]. A key difference is that our

work learns and uses a goal-conditioned policy for exploration,

rather than training a monolithic policy to optimize an exploration

objective. In this sense, our work is similar to noise-conditioned [40,

46] and variational exploration algorithms (next paragraph). Future

work might explore how one can automatically choose a good goal

space for doing MEGA-style maximum entropy exploration.

Empowerment. Since the agent’s off-policy, goal relabeling learn-
ing algorithm can be understood as minimizing the conditional

entropy of (on-policy) achieved goals given some potential goal

distribution pд (not necessarily the behavioural goal distribution

pbд ), simultaneously choosing pbд to maximize entropy of his-

torical achieved goals (the MEGA objective) results in an empow-
erment-like total objective: maxpbд H [paд] − H [ag(τ | pд) | pд] ≈

maxpд I [pд ; ag(τ | pд)], where equality is approximate because the

first max is with respect to pbд , and also because H [paд] is histor-
ical, rather than on-policy. Empowerment [28, 34, 51] has gained

traction in recent years as an intrinsic, unsupervised objective due

to its intuitive interpretation and empirical success [15, 21]. We can

precisely define empowerment in the multi-goal case as the channel
capacity between goals and achieved goals [10]:

E(s0) = max

pд
Ep(τ |д,s0)pд (д)I [pд ; ag(τ | pд )], (8)

where s0 represents the initial state distribution. To see the intuitive
appeal of this objective, we reiterate the common argument and

write: I [pд ; ag(τ | pд)] = H [pд] − H [pд | ag(τ | pд)], where H is en-

tropy. This now has an intuitive interpretation: letting H [pд] stand
for the size of the goal set, andH [pд | ag(τ | pд)] for the uncertainty
of goal achievement, maximizing empowerment roughly amounts

to maximizing the size of the achievable goal set.
The common approach to maximizing empowerment has been

to either fix or parameterize the distribution pд and maximize the

objective I [pд ; ag(τ | pд)] on-policy [20, 48, 64]. We can think of

this as approximating (8) using the behavioural goal distribution

pbд ≈ argmaxpд I [pд ; ag(sT | pд)]. A key insight behind our work

is that there is no reason for an off-policy agent to constrain itself

to pursuing goals from the distribution it is trying to optimize.

Instead, we argue that for off-policy agents seeking to optimize

(8), the role of the behavioural goal distribution pbд should be

to produce useful empirical data for optimizing the true off-policy
empowerment (8), where the maximum is taken over all possible pд .
Practically speaking, this means exploring to maximize entropy of

the historical achieved goal distribution (i.e,. the MEGA objective),

and letting our off-policy, goal relabeling algorithm minimize the

conditional entropy term. Future work should investigate whether

the off-policy gain of MEGA over the on-policy Diverse sampling

can be transferred to general empowerment maximizing algorithms.

6 CONCLUSION

This paper proposes to address the long-horizon, sparse reward

problem in multi-goal RL by having the agent maximize the entropy

of the historical achieved goal distribution. We do this by setting

intrinsic goals in sparsely explored areas of the state space, which

focuses exploration on the frontier of the achieveable goal set. This

strategy obtains results that are more than 10 times more sample

efficient than prior approaches in four long-horizon multi-goal

tasks.

We also identified two directions for future work. First, how

can an agent automatically discover a good low-dimensional goal

space for maximum entropy gain exploration? Second, can the idea

of maximizing empowerment “off-policy” be extended to improve

other empowerment maximizing algorithms? Other angles include

combining MEGA exploration with hierarchical RL algorithms [35],

applying MEGA in pixel-based tasks [37] and using MEGA explo-

ration to optimize general (not multi-goal) tasks [21, 64].

LINK TO FULL APPENDIX

https://www.dropbox.com/s/h5eliwabwf0jbwr/MEGA_Appendix.pdf

Code to follow.
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Fig. 6: Additional visualization: behavioural (top) and terminal achieved (bottom) goals in AntMaze.

ABRIDGED APPENDIX

Implementation details. We use a DDPG agent that acts in multi-

ple parallel environments. Our agent keeps a single replay buffer

and copy of its parameters and training is parallelized using a GPU.

We utilize many of the same tricks as Plappert et al. [47], including

clipping raw observations to [-200, 200], normalizing clipped obser-

vations, clipping normalized observations to [-5, 5], and clipping

the Bellman targets to [− 1

1−γ , 0]. Our agent uses independently

parameterized, layer-normalized [3] actor and critic, each with 3

layers of 512 neurons with GeLU activations [24]. We apply gra-

dient norm clipping of 5, and apply action l2 regularization with

coefficient 1e-1 to the unscaled output of the actor. We apply action

noise of 0.1 to the actor at all exploration steps, and also apply

epsilon random exploration of 0.1.

We use Adam Optimizer [26] with a learning rate of 1e-3 for

both actor and critic, and update the target networks every 40

training steps with a Polyak averaging coefficient of 0.05. We vary

the frequency of training depending on the environment, which can

stabilize training; we optimize every step in PointMaze, every two

steps in Antmaze, ever four steps in FetchPickAndPlace, and every
ten steps in FetchStack2. Optimization steps use a batch size of

2000, which is sampled uniformly from the buffer (no priorization).

There is an initial “policy warm-up” period of 5000 steps, during

which the agent acts randomly. Our buffer has infinite length.

We generalize the future strategy by additionally relabeling

transitions with goals randomly sampled (uniformly) from buffers

of actual (environment) goals, past achieved goals, and behav-

ioral goals (i.e., goals that agent pursues during training). We call

this the rfaab strategy, which stands for Real (do not relabel),

Future, Actual, Achieved, and Behavioral. Intuitively, relabeling

transitions with goals outside the current trajectory allows the

agent to generalize across trajectories. All relabeling is done online.

The rfaab strategy requires, as hyperparameters, relative ratios of

each kind of experience, as it will appear in the minibatch. Thus,

rfaab_1_4_3_1_1 keeps 10% real experiences, and relabels approxi-

mately 40%with future, 30%with actual, 10%with achieved, and
10% with behavioral. We use rfaab_1_4_3_1_1 in PointMaze
and Antmaze and rfaab_1_5_2_1_1 in Fetch.

For density modeling, we considered three approaches: a ker-

nel density estimator (KDE) [50], a normalizing flow (Flow) [42]

based on RealNVP [12], and a random network distillation (RND)

approach [8]. Based on the resulting performances and relatively

complexity, we chose to use KDE throughout our experiments. We

tested each approach in PointMaze only. Both the KDE and Flow

models obtain similar performance, whereas the RND model makes

very slow progress. Between KDE and Flow, we opted to use KDE

throughout our experiments as it is fast, easy to implement, and

equally effective in the chosen goal spaces (maximum 6 dimen-

sions). It is possible that a Flow (or VAE-like model [37]) would be

necessary in a higher dimensional space.

To encourage the agent to explore around the behavioral goal,

we increase the agent’s exploratory behaviors every time the be-

havioral goal is reachieved in any given episode. We refer to this

as “Go Exploration” after Ecoffet et al. [14], who used a similar

approach to reset the environment to a frontier state, and explored

around that state. We use a very simple exploration bonus, which

increases the agent’s epsilon exploration by a fixed percentage. We

use 10% (see next paragraph), which means that an agent which

achieved the goal 10 times in an episode will be exploring purely

at random. All baselines benefited from this feature.

Many of the parameters above were initially based on what

has worked in the past Dhariwal et al. [11], Plappert et al. [47]. To

finetune the base hyperparameters, we ran two random searches on

PointMaze—one for rfaab and one for general hyperparameters—

in order to tune a MEGA agent. The same base hyperparameters

were used for all baselines.

All baselines are modify only line (∗) of MEGA_Select. The

Diverse baseline scores candidates using 1/p̂aд , where p̂aд is esti-

mated by the density model (KDE, see above), and then samples

randomly from the candidates in proportion to their scores. This

is similar to using Skew-Fit with α = −1 [48] or using DISCERN’s

diverse strategy [64]. The Achieved baseline samples a random

candidate uniformly. This is similar to RIG [37] and to DISCERN’s

naive strategy [64]. This GoalDisc baseline adapts Florensa et al.

[17]’s GoalGAN. To select goals, it passes the goal candidates, along

with starting states, to a trained goal discriminator, which predicts

the likelihood that each candidate will be achieved from the start-

ing state. The goals are ranked based on how close the output of

the discriminator is to 0.5, choosing the goal with the minimum

absolute value distance (the “most intermediate difficulty” goal). We

do not use the cutoff mechanism based on Q-values in this strategy.

The MinQ strategy uselects the goal with the lowest Q-value [22].
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