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ABSTRACT
The study of the emergence of cooperation remains an open chal-
lenge for many areas of knowledge. This problem may be conve-
niently formalised using Game Theory and an Iterated N-person
dilemma games. In this work we investigate the emergent learning
dynamics of this kind of problem using Reinforcement Learning
(RL). We simulate decision-making in N -person dilemma games
with players with different levels of sophistication concerning their
learning policies and observation levels. We show that the combi-
nation of a simple Actor-Critic RL architecture with a state space
that includes the number of agents who cooperated in the previous
round can offer sufficient conditions for cooperation to thrive. This
result is shown to depend on the size of the group and the strength
of the dilemma. Moreover, cooperation is shown to increase with
low exploration and learning rates while decreasing with signif-
icant discounting of future rewards. Overall, our results suggest
that for each dilemma, an appropriate selection of state space and
learning policy ensures coordinated efforts within a multi-agent
system composed of adaptive self-interested agents.

KEYWORDS
Reinforcement Learning; Game Theory; Multi-Agent Systems; Pub-
lic Goods Games.

1 INTRODUCTION
Benefits of cooperation are abundant in nature. One of the reasons
why the early Homo Sapiens individuals replaced the physically
stronger Neanderthals is the superior social capacities of the former
over the latter [12]. Argentinian Ants can work together even from
different colonies, their high level of cooperation [28] allows them
to beat many other species in competition for resources [11].

However, cooperation is not easily achieved. There are obstacles
to cooperation that only few species are able to overcome. One
model that illustrates well this dichotomy is the Prisoner’s Dilemma
game (PD). In this game there are two players; if both cooperate they
split the rewards equally, if only one cooperates it wastes its efforts
and loses its rewards to the other player, if no one cooperates they
have no gains. Therefore, the obstacle to achieving cooperation
in this model is the conflict between what is best for the group

and what is best for the individual. The game where agents play
PD repeatedly multiple rounds is called the Iterated (or repeated)
Prisoner’s Dilemma (IPD); the iterated NPD is the generalisation of
the IPD for games with more than two players.

In order to answer which factors stimulate cooperation among
players, this paper proposes a set of experiments with agents that
behave similarly to animals in the iterated NPD.

One way of approximating animal behaviour is assuming that
they make decisions based on what they learn. They try out differ-
ent approaches and nature punishes or rewards their behaviour;
they thus use this information to improve future decisions [23, 25].
One class of algorithms inspired by this idea is called Temporal
Difference Reinforcement Learning (TD-RL). Reinforcement Learn-
ing (RL) means the agents learn through repetition, punishment
and reward (i.e., through trial and error). Temporal Difference (TD)
means that learning takes place by comparing the agents current
information with that observed in the immediate future. TD-RL
algorithms achieve this by measuring not only the quality of the
current action but also if that action leads to a state where it is
possible to get more rewards in the next iterations. Another key
aspect of learning through trial and error is to balance exploration
and exploitation. The first is responsible for seeking better alterna-
tives, and the latter is responsible for taking advantage of acquired
knowledge to get high rewards.

In this paper we seek to answer the following four questions:

(1) Can RL agents achievewidespread cooperationwhen playing
NPD? What makes it difficult for them to achieve?

(2) How do the learning parameters impact cooperation?
(3) What is the role of cognition in the emergence of cooperation

among RL players playing NPD?
(4) What RL players learn when playing NPD? What the most

cooperative RL player learn?

The first question focuses on the game parameters, the size of
the group and how much wealth the group generates, to find if
there is a combination of them in which the players converge to
widespread cooperation. Then, the second question addresses the
learning parameters, how fast they learn and how valuing future
gains affect the cooperation rates. With those parameters set, in
addressing the third question we define a set of RL players with



different cognition levels to investigate howmuch each one of them
cooperates in homogeneous groups. Finally, in the last question,
we analyse the strategies the players learn in particular, the learned
policies that lead to higher cooperation rates.

This approach (see also, e.g.,[2, 5, 21, 26, 27]) does not aim to
analyse the convergence or optimality as most studies of reinforce-
ment learning in game theory settings (see, e.g., [15, 17]). In [4],
different heuristics are used to improve the convergence to optimal
Nash-equilibrium states, where players do not have incentives to
change the way they are playing. On the other hand, in [31], the
authors consider RL players that play many different games, and in
some cases, the players converged to Nash-equilibrium, in others
oscillated around the equilibrium, and in the PD achieved better-
than-Nash results. Moreover, [14] proposed RL players that play
PD optimally against many fixed strategies and cooperate when
playing against each other. These works focus on 2-person games
and study if those players converge to a previously known Nash-
equilibrium state. In this work, we study how RL players behave
when interacting with more than one player at the same time, evalu-
ating the emerging prevalence of cooperation and which strategies
individuals learn when facing a collective action problem.

This work covers the fundamental concepts to understanding
these results (section 2), then defines the different players (section
3) that appear in the experiments (section 4). Finally, we compare
our approach with other works (section 5) and give our conclusions
(section 6).

2 FUNDAMENTALS
In this section we define the NPD game and provide the basics of
reinforcement learning.

2.1 Defining the Game
The N -person prisoner’s dilemma (NPD) constitutes the most used
metaphor to study public goods games (PGGs): cooperators (C)
contribute an amount p to the public good; defectors (D) do not
contribute. The total contribution is multiplied by an multiplication
factor f and the result is equally distributed between allN members
of the group, irrespectively of who contributed. Hence, defectors get
the same benefit of the cooperators at no cost. In the iterated NPD,
this entire process repeats itself for multiple rounds. The outcome
of the game may differ from round to round, as individuals can base
their decision to contribute on multiple criteria.

The reward function for NPD can be formalised by

R(D) =
f kp

N
, R(C) = R(D) − p, (1)

where k is the number of cooperators, f is the public goodmultiplier,
p is the donation to the public good, and N is the number of players.

This game is the generalisation of PD for many players because
it has the same three possible situations: the greatest overall reward
is achieved when all players cooperate, mutual defection is worse
than mutual cooperation, and in a mixed pool of actions defective
players take advantage of cooperative players’ efforts.

2.2 Learning by Experience
In reinforcement learning (RL), the interaction between the agent
and the environment is described as a Markov decision process

(MDP), defined as a tuple (S,A, P,R). In anMDP, at each time step t
the agent observes the state of the environment, denoted as st and
takes values in the set S , and selects an action at ∈ A. The state
should include all relevant information for the agent selecting its
action. Depending on st and at , the agent then receives a reward
Rst ,at and the environment transitions to a new state st+1 ∈ S
according to the probabilities in P (usually unknown). The goal of
the agent is to select the actions to maximise the total expected
discounted reward,

V = E

[∑
t
γ tRst ,at

]
,

whereγ is a scalar discount factor in [0, 1). The goal of the agent is to
determine a policy, π , that maps states to actions and maximises the
value V above. During learning each player follows an exploration
policy, that chooses actions based on its current knowledge. Given
enough time, the exploration policy converges to a fixed learned
policy, also referred to as learned strategy.

The quality of a state-action pair (s,a) in terms of the aforemen-
tioned long-term goal is represented through a number, Q∗(s,a),
that can be computed using a number of algorithms. In [14] and in
this work the RL algorithm used is the SARSA algorithm, whose
updating rule for the value of each pair action/state is:

Qst ,at ← Qst ,at + α(Rst ,at + γQst+1,at+1 −Qst ,at ), (2)

where Qst ,at is the current quality of action a in state s , α and γ
are the learning rate and the discounting factor, respectively; α
configures how fast the agent learns, while γ discounts the value of
future rewards, the higher γ the more important are future rewards
for the agent. It is possible to arrange the Qst ,at in a table, with
states as rows and actions as columns, this table is called Q-value
table.

3 METHODOLOGY
In previous section, we introduced the game and the learning al-
gorithm. By varying N and f we analyse the conditions in which
cooperation prevails (see first question). Regarding the second ques-
tion, to find out how the learning process impact the cooperation
of the group, we investigate the impact of the parameters α and γ .

While previous section sets the foundation for answering the two
first questions, this section introduces the theoretical framework
for developing the last two. In the following subsections we define
each player’s level of perception and action selection method, from
the simplest to the most complex, besides that, we show how to
extract from the Q-value table what these players learn.

3.1 Perceiving more
The state-space limits the policies the player can learn. Hence, the
state space can be associated with the “cognitive capabilities” of the
players: the larger the state space, the more complex policies it can
learn; so, the higher is its cognition. Here we define 4 different types
of players, also called agents, each of them with a larger state space
size than the previous one: MemoryLess, MajorTD4, SelflessLearner
and LevelLearner.

The two first players are inspired, respectively, in TD1 and TD4
from [14].MemoryLess (and TD1) has only one state and is expected
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to defect always, since it does not know anything from previous
rounds. The MemoryLess player is going to be used as a baseline
for the other players.

MajorTD4 has the exactly same state space as TD4: it knows
its action in the last round at−1 and the action of the opponent(s)
in the last round āt−1, which sets up four states, S = {at−1āt−1 :
CC,CD,DC,DD}. However, for TD4, āt−1 is the single opponent
last action and, for MajorTD4, āt−1 is the most frequent action
executed by the opponents in the last round; both choose C over D
if tied. MajorTD4 receives this name thanks to its similarities with
TD4 and its dependence on the majority of opponents’ last actions.

The other two players are based on the idea that it is better to
know precisely how many players cooperated in the last round.
The name LevelLearner comes from this idea of knowing every
‘level’ of cooperation. Besides how many individuals contributed
in the previous round, this player also remembers its last action
as MajorTD4. As the number of states of LevelLearner increases
quickly with the number of players, we designed SelflessLearner
that, differently from MajorTD4 and LevelLearner, does not know
its own last action, and has a space state size between the other
two.

The state spaces sizes of MemoryLess and MajorTD4 are inde-
pendent of other parameters, and they are, respectively 1 and 4.
However, for the other two players this size varies with the number
of players. Since the number of cooperators may vary from 0 to N,
the number of possible states for the SelflessLearner is N + 1. Since
LevelLearner knows its own action, which has two possible values
(C or D) and there are two unreachable states (DN and C0), its state
space size is 2(N + 1) − 2 = 2N . Resuming, for N = 5 the state
spaces sizes of each of these two players are |{0, 1, 2, 3, 4, 5}| = 6
and |{D0,D1,D2,D3,D4,C1,C2,C3,C4,C5}| = 10, respectively.

3.2 Choosing Smartly
SARSA is a on-policy algorithm because it uses the exploration pol-
icy to approximate the rewards of the next state. This means that the
exploration policy has great impact on the algorithm performance
and on what it learns on the Q-value table.

One commonly used exploration policy is ϵ-greedy, that is the
one used in [14]:

πϵ (s) =

{
arдmaxaQ(s,a), with probability (1 − ϵ);
arдminaQ(s,a), with probability ϵ . (3)

It is greedy because it chooses the action with greater value for
the current state with a high probability 1−ϵ and chooses randomly
any other action with probability ϵ , that is the exploration factor.
This policy has this explicit factor to regulate agent’s exploration.
Formally, the ϵ-greedy policy for IPD and NPD is shown in Equa-
tion (3). Since in these games there are only two possible actions,
choosing randomly any other action is just selecting the other one.
In the case that the two actions have the same value in the table
for a state, the agent chooses one randomly, including at the start
when the whole Q-value table is initialised with zeros.

Exploration allows the player to transit through many states,
which enhances learning by enabling greater exploration of the
state space and thus finding the best policy.

Hence, it is urgent to increase cooperation without lowering ϵ
so much. One solution for that is to have a high value of ϵ in the

beginning of the game and decrease the value of ϵ through time.
It is possible to define two other policies with dynamic decreasing
ϵ : one decays by a linear function, the other by a logarithmic one.
The linear function is given by:

ϵl in =
ϵ0

NR + 1
, (4)

where ϵ0 is the initial value of the exploration factor and NR is the
number of rounds already played.

Similarly, a logarithmic decreasing ϵ-greedy policy is:

ϵloд =
ϵ0

ln(NR + 2)
. (5)

Another option is to use exploration policies that do not have an
exploration factor (although they allow the agent to explore). One
way of doing that is with probability distribution functions like
Boltzmann that uses the Q-value table to calculate the probabilities
of choosing each action in the current state, as stated in:

pa (s) =
eβQ (s ,a)∑

a′∈A eβQ (s ,a
′)
. (6)

In this equation, β is a constant that changes the shape of the
function. An agent following this exploration policy sorts its action
based on these probabilities at each time step. Note that pD +pC = 1
at any time. Since the Q-value table starts with all entries equal to
zero, before simulation starts pD = pC = 0.5, this means that at the
beginning the agent will choose actions randomly like the ϵ-greedy
policies.

Finally, the last exploration policy tried out in this work is an
actor-critic policy. Actor-critic agents learn two different things
while playing. The first is the critic that is how good an action is for
each state, the other is the actor that learns how to choose actions
given the critic. One simple way of doing this is to use a Bernoulli
distribution for each state, represented in:

pa,s =

{
ps , if a = C,

1 − ps , if a = D.
(7)

where ps is the probability to cooperate in state s . The agent will
learn a vector of probabilities p = [ps1 ,ps2 , . . . ,psn ], where n = |S |
and the probabilities are initialised with 0.5.

It is then possible to rewrite the Equation (2) as:

Qst ,at ← Qst ,at + αδ ,
δ = rst ,at + γQst+1,at+1 −Qst ,at .

(8)

The factor δ is then used to update the value of each element in
the vector of probabilities according to:

∆ps = αpδ (y
t − pts ), (9)

where αp is the learning rate of this exploration policy, yt is the
value of action selected in round t (it is 1 if at = C and 0 otherwise)
and pts is the current value of the probability of cooperating in the
current state st . This is a linear actor-critic policy, simplified for
|A| = 2, as specified in [30].

3.3 Strategy Identification and Dynamics
At the beginning, agents play randomly, independently of the explo-
ration policy they are following. However, when they start to learn
they start trying out strategies, until they find the best strategy for
their environment. Nevertheless, the other players are part of that
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environment, so when a player starts playing a different strategy,
it changes the environment for the others, which may cause them
to change strategy in response. This happens because RL agents
always try to learn the optimal strategy against the other players.
The search for the optimal response for the environment is what
creates these dynamics.

First we need to define what is a strategy, that is only a sequence
of actions, that usually can be translated into a rule, like always
cooperate (ALLC), always defect (ALLD), alternate defection and
cooperation (ALT ), start cooperating then copy opponent’s action
(TFT ), defect if the opponent defected twice in a row and cooperate
otherwise (TF2T ), repeat last action if in mutual cooperation or
defected against cooperation and flips last action otherwise (WSLS).

A strategy h1 is optimal against strategy h2 if there is no other
strategy that has greater expected reward playing against h2. Ex-
amples of optimal strategies are abundant in the literature: ALLC is
optimal against TFT, ALLD is optimal against ALLC, TFT is optimal
against ALLD and ALT is optimal against TF2T. By analysing what
strategies the players learn at the end of simulation it is possible to
explain why some player cooperates more than others and what
is the reasoning about the player’s decisions. On the other hand,
by checking how many times a player changes strategy during
learning it is possible to measure how much the player is exploring
alternative strategies.

To determine what strategy an RL agent is playing at a given
point it is necessary to look at itsQ-value table. For the greedy poli-
cies and Boltzmann policies, the Q-value gives all the information
to determine how the player is playing. For actor-critic policy it
is necessary to look at the probabilities learned by the actor. An-
other thing to notice is that greedy policies only play deterministic
strategies, while Boltzmann and actor-critic may play stochastic
strategies that define probabilities of playing each action in each
state. For simplicity only the strategies learned by MajorTD4 are
analysed.

For this player, the set of states is S = {CC,CD,DC,DD}. Hence,
strategies can be defined using four bits, b3,b2,b1,b0, where each
bit corresponds to the action the player chooses in a given state1.
By generating every possible value, there are 16 possible strategies
and many of them were already mentioned, for example: ALLD =
0000 = S00, ALT = 0011 = S03, TFT = 1010 = S10, ALLC = 1111 =
S15. Then, to extract which strategy a player is currently playing,
we check at that moment the actionwith the highest quality for each
state and set the corresponding bit accordingly. Finally, whenever
an agent reevaluates the best action for a given state, it changes
its strategy and we can measure exploration by the frequency that
players change strategy on average.

4 RESULTS
In order to assess improvement in cooperation, it is necessary to
establish an initial configuration from which variations are created
by changing one trait at a time. The basic configuration is an NPD
game with f = 2 and five MajorTD4 players, all with α = 0.05,
γ = 0.9, and the ϵ-greedy learning policy with ϵ = 0.001. The
values for α and γ are based in [14], and, as in NPD is expected

1Bit is 1 for C, and 0 for D.

even higher sensibility to the exploration factor, this baseline has a
smaller value of ϵ than the one used in [14], ϵ = 0.01.

Besides that, there are two fixed parameters for NPD, the starting
resources and the cooperation cost; the first is fixed in 20 and
the second fixed in 1. Those parameters open a whole new set of
possible experiments, regarding wealth distribution and its impact
on cooperation, for example. However, this work does not evaluate
the influence of these parameters.

The experiments are arranged to investigate different effects,
each of them is driven to answer a question. Each study case has
two phases: the learning phase and the execution phase. In the
first the players learn and in the second the players only execute
their learned policies and we measure the cooperation rates. In the
learning phase, we create N identical and independent players that
learn by playing with each other through 20000 rounds, then we
sample one of them to be in the execution phase. This process is
repeated N times, so we get N players in the next phase. In the
execution phase these players play through 1000 rounds without
learning, at the end the cooperation is measured over the last 1002
rounds for each player. At this point we have the result of one
game. This whole process, learning phase and execution phase, is
then repeated 1000 times. So at the end of 1000 games we have the
average cooperation rate and its standard error. This two values
are used to create a single point of each figure of this work.

We perform three studies and one analysis: the Environment
Study, the Learning Study, the Cognition Study, and the Strategy
Analysis. The Environment Study checks if there is a scenario in
which players cooperate and proposes a challenge to test which
player cooperates the most. The Learning Study investigate how
the learning process may affect the cooperation of the group. The
Cognition Study tests different players to identify the role cognition
plays in their cooperation. Finally, Strategy Analysis assesses the
learned policy in order to discuss the reasons behind the improve-
ments in cooperation.

4.1 Environment Effect
There are two parameters of the game expected to impact the coop-
eration: the number of players N and the public goods multiplier f.
These two parameters are tuned for setting an environment hard
to cooperate in order to highlight the impact of agents’ cognition
in cooperation.

We can see in figure 1 that as the number of players increases,
cooperation decreases regardless of the type of player. For coop-
eration, players must coordinate efforts and it is more difficult to
coordinate a larger group. However,MajorTD4 shows an interesting
phenomenon: groups with an even number of players cooperate
more than groups with odd numbers; since this is specific to that
player, it is probably a consequence of the approximation of oppo-
nents’ behaviour to that of the majority (e.g. for both N = 5 and N
= 6, the majority is 3).

Figure 2 shows that as the multiplier of public goods increases,
cooperation increases sharply. The public goods multiplier reflects
the amount of resources in the environment, and the smaller the

2Even though in the execution phase there is no more learning, players can take a few
moves to converge to a stable state, hence we take the average of the cooperation only
in the last 100 turns.
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Figure 1: Cooperation rates of different players playingNPD
(f = 2) following ϵ-greedy policy with ϵ = 0.001 for different
population sizes (N ).

Figure 2: Cooperation rates for five MajorTD4 playing NPD
following ϵ-greedy policy with ϵ = 0.001 for different values
of public good multiplier f.

harder it is to cooperate. In a resource-rich scenario, with high f
values, even poor cooperation yields rewards that outweigh the
cost of cooperating, and this lessens the fear of being exploited by
other non-cooperating players, resulting in increased cooperation.

The scenario with f = 2 and N = 5 will be used as a baseline in
the following experiments because this is a hard enough setup to
cooperate, with a relatively small number of players, which makes
simulations less computationally costly.

4.2 Learning rates and discounting factors
There are two parameters that shape players behaviour: the learning
rate (α ) and the discounting factor (γ ).

The learning rate sets the pace of learning. The smaller the α
the more time the agent needs to learn and the more it accumulates
knowledge through time. The higher the α the faster it learns and
more frequently old knowledge is discarded to make room for new
one. As expected a small α boosts cooperation, as shown in figure
3.

The discounting factor γ penalises rewards that are in the future.
A player with γ close to one prioritises future rewards more than an
agent with low values of γ . Figure 4 shows that players cooperate
more when they value long-term gains over immediate gains.

Figure 3: Cooperation rates for five MajorTD4 playing NPD
(f = 2) following ϵ-greedy policy with ϵ = 0.001 for different
learning rates α .

Figure 4: Cooperation rates for five MajorTD4 playing NPD
(f = 2) following ϵ-greedy policy with ϵ = 0.001 for different
discount factor values γ .

Although ϵ only appears in ϵ-greedy exploration policies, it has
a huge impact on cooperation. As shown in Figure 5, regardless of
state space, ϵ greatly affects cooperation, ranging from less than
10% to almost 80% cooperation with MajorTD4.

4.3 The role of cognition
Regarding cognition, it is noted that the dimension of the state space
is due to the player’s perception – the larger and more detailed the
state space, the greater the agent’s perception of the environment.
Based on state space, the exploration policy makes decisions about
player actuation.

Figure 5 shows how the rate of cooperation varies with respect to
the value of ϵ and to the different agents with different perceptions
of the environment. The results of Memoryless and MajorTD4 are
expected: the increase in state space allowed a huge improvement in
cooperation rates, although at the cost of decreasing the exploration
degree. However, the reduction in SelflessLearner and LevelLearner
cooperation is not expected. It was expected that the increase in
state space size would enhance cooperation. Since the agent with
the best results is the MajorTD4, the next experiments tries out
different exploration policies with this agent in order to enhance
cooperation without decreasing exploration significantly.

Decreased exploration harms the learning process: it makes play-
ers less adaptive and more likely to stay in sub-optimal states. One
way to measure that is to check in average how many times the
player changes the strategy during learning. The more strategy
changes, the more the player explored alternatives. The average
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Figure 5: Cooperation rates for five agents playing NPD (f =
2) following ϵ-greedy policy for different values of ϵ and dif-
ferent information levels.

Policy Strategy
Changes

Algorithm Parameter Average Standard
Deviation

ϵ-Greedy ϵ = 0.01 104.91 142.96
ϵ-Greedy ϵ = 0.001 3.812 14.92
ϵ-Greedy ϵ = 0.0001 1.84 1.90

Linear-Dynamic-ϵ ϵ0 = 0.1 1.56 1.32
Log-Dynamic-ϵ ϵ0 = 0.001 1.83 1.44
Boltzmann β = 0.01 9.26 4.62
Actor-Critic αP = 1 2.82 4.32

Table 1: Average number of changes on strategy for 1000
NPD games (f = 2),MajorTD4 and 5 players during learning
for different policies.

strategy changes for MajorTD4 following different exploration poli-
cies are in table 1. Notice how the strategy changes decrease when
ϵ is decreased in ϵ-greedy with static ϵ .

Then, the goal is to find the exploration policy that leads to
higher cooperation rates and allows exploration of at least ϵ-greedy
policy with ϵ = 0.0001 level. After testing each policy for many
variations of its parameters, the best configurations was selected.
Their strategy-changes are in table 1 and their cooperation rates in
figure 6.

The only policy that strictly increases cooperation and strategy
exploration is the actor-critic policy, that stands out as the best
result. The ϵ-greedy with linear decreasing ϵ also has cooperation
improvement but at slightly less exploration. While ϵ-greedy with
logarithmic decreasing ϵ and Boltzmann increase exploration at
the expense of small decrease in cooperation rates.

Actor-critic exploration policy obtained the best result with Ma-
jorTD4. This was expected because it allows the agent to learn
slower which in turn reduces the impact of randomness during
learning. Then, we checked how this exploration policy would re-
act with players of different state space sizes, the results are in

Figure 6: Cooperation rates for five MajorTD4 playing NPD
(f = 2) for different policies.

figure 7. The best result with this exploration policy was with Lev-
elLearner (αP = 0.05) and achieved cooperation over 80% and high
exploration: the value for strategy changes is 25.34 ± 8.28.

Figure 7: Cooperation rates for five agents playing NPD (f =
2) following actor-critic policy for different values of αP and
different information levels.

These results show how cognition is central to cooperation: it
allowed the improvement fromMemoryLess toMajorTD4, regarding
state space, from ϵ-greedy to actor-critic, regarding exploration
policy, and from MajorTD4 to LevelLearner regarding state space
again. Although increasing cognition in these two cases improved
cooperation, fixing one state space and varying exploration policies
or fixing an exploration policy and varying the state space does
not reveal a steady improvement in cooperation. The improvement
in cooperation seems attached to the careful combination of both
dimensions.

4.4 Strategy Analysis
The state space of MajorTD4 has the advantage of being easily
translated into one of the 16 memory-one strategies of IPD. So this
section focus on the strategies learned by MajorTD4 and also ex-
plores the probabilities of cooperation learned by players following
actor-critic.

There is significant difference between the strategies learned by
MajorTD4when following ϵ-greedy and when following actor-critic.
The first is the number of players that learn TFT. The second big
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difference is the number of S05 strategies. S05 is interesting because
it is the TFT upside down: instead of copying the opponent’s last ac-
tion, it plays the opposite of opponent’s last action. This means that
when few players are cooperating, the player cooperates, and when
many are cooperating, it defects. The emergence of this strategy
may be responsible for the boost in S15 = ALLC frequency with
actor-critic policy. Besides those differences, both configurations
have a low number of ALLD and a high number of ALLC, although
with actor-critic the frequency of ALLC is considerably higher.

Figure 8: Frequency of strategies learned through 1000
games by five MajorTD4 playing NPD (f = 2) following ei-
ther actor-critic (αP = 1) or ϵ-greedy (ϵ = 0.001).

Nevertheless, actor-critic policy also learns the probabilities of
cooperating in each state. The average results over 1000 games
are shown on table 2a for MajorTD4, on table 2b for SelflessLearner
and on table 2c for LevelLearner. While MajorTD4 agents learn to
cooperate more in high cooperation states when compared to low
cooperation states, SelflessLearner and LevelLearner players learn to
cooperate around 60% frequency when no one is cooperating and to
not cooperate when only one or two players are cooperating. This
shows that the agent learned a recover mechanism, a way of going
from a state of no cooperation to a state of high cooperation. This
explains the cooperation rates of figure 7 with both SelflessLearner
and LevelLearner. This mechanism resemblesWSLS, however dur-
ing learning players following actor-critic do not learn this strategy.
It seems they end up differentiating in the case of MajorTD4 and
SelflessLearner, what explains the high standard deviations, or con-
verging to a mixed strategy in the case of LevelLearner to create
this mechanism.

The recover mechanism of LevelLearner following actor-critic
stabilises with four cooperators (C4) and one defector (D4). But if
by chance one of the cooperators decides to stop cooperating, it
goes to state D3 and the other cooperators go to C3. Following this
path the group stops cooperating very quickly, when this happens
they try to start cooperating together, until they reach stability
again.

Overall, the configuration that have the higher cooperation rates
are the one whose cognition level allowed the agents to develop
mechanism to recover from a state of widespread defection.

Table 2: Average probability to cooperate and average de-
viation of actor-critic with (a) MajorTD4 (αP = 1), (b) Self-
lessLearner (αP = 0.05) and (c) LevelLearner (αP = 0.05) for
each state of S.

State DD DC CD CC
Average 0.3758 0.3949 0.4280 0.8538
St. Dev. 0.2128 0.2069 0.1923 0.2232

(a) MajorTD4

State 0 1 2
Average 0.6317 0.0099 0.0474
St. Dev. 0.0353 0.0151 0.0209

State 3 4 5
Average 0.1700 0.7801 0.6792
St. Dev. 0.1368 0.4037 0.1529

(b) SelflessLearner

State D0 D1 D2 D3 D4
Average 0.5808 0.0588 0.0159 0.0158 0.0165
St. Dev. 0.0244 0.0275 0.0118 0.0209 0.0568

State C1 C2 C3 C4 C5
Average 0.1833 0.2439 0.6138 0.9995 0.6033
St. Dev. 0.0625 0.0365 0.0320 0.0041 0.0700

(c) LevelLearner

5 DISCUSSION
It was expected some level of cooperation for RL players in NPD,
since [14] shows cooperation among RL players for a specific set of
parameters in IPD. Besides that, RL algorithms can improve cooper-
ation in evolutionary settings [24] and in [9], broad cooperation is
achieved for different levels of language expressiveness.

In this last work, it is explored how the expressiveness of a
language impact cooperation in NPD. Two different languages to
represent agents’ strategies are studied: finite automata and adap-
tive automata. The latter is the more expressive. When simulation
results of both languages were compared, the authors concluded
that in both there was a convergence to broad cooperation between
the agents, without significant statistical difference on society’s
long-run welfare; however, when simulation started with wide-
spread defection a higher welfare was obtained with players using
adaptive automata language. In other words, a more expressive
language allows the agents to recover better from defection, sim-
ilarly, a richer cognition level in this work allows agents to learn
strategies that recover quickly from defection. Experiments with
people also show that increasing the amount of information of the
group improve cooperation [29].

A possible strategy to improve cooperation is, precisely, to re-
cover from defection, as the strategy WSLS does in IPD and Lev-
elLearner following actor-critic does in NPD. However, there are
other ways to improve cooperation. One alternative is to improve
cooperation by having players in the group whose objective is to
improve cooperation, as proposed by [10]. The strategy S05 seems
to have this role in NPD and MajorTD4 following actor-critic learns
it. This strategy increases the level of cooperation of the group
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when few are cooperating, what may incentives other to adhere to
cooperation and takes advantage when there are a lot of coopera-
tors. Another way to incentive players to cooperate is to reciprocate,
like TFT. However, in this work, the higher the frequency of agents
playing TFT, the lower the cooperation rates.

The bad performance of reciprocity in social dilemmas is ex-
pected [8]. Differently from IPD that it is possible to punish the
opponent for defecting by defecting as well, in public goods games
as NPD, there is no way for punishing a single defector without
punishing the rest of the group. This explains why cooperation
is harder in larger groups, as N increases the impact of a single
defector in the group overall cooperation decreases, what favours
defection.

The results of figures 5 and 7 show how a proper definition of
state space can influence the cooperation of the group. This result
is corroborated by [3], that achieved improvements in group coor-
dination by improving state space carefully, since this process can
hinder learning. This can explain in part the cooperation rates in
figure 5, with MajorTD4 as the most cooperative player. In [7, 22]
limited cognition levels appear as the configuration that cooperate
the most, when studying past reputation and evolutionary settings
respectively.What may indicate that there are specific broad cooper-
ative stable configurations of different cognition levels, asMajorTD4
following ϵ-greedy and LevelLearner following actor-critic.

Finally, when [8] studied the dynamics of social dilemmas, they
found that there are two stable states: one of widespread coopera-
tion and one of widespread defection. Those states are not static,
the cooperation rates of the groups stay floating around one of
them, these small fluctuations are due to uncertainty of the players
or when some players estimate wrongly the level of cooperation.
Nevertheless, during long runs, stronger fluctuations may occur
and bring the group from one stable state to the other. The con-
sequence is that it is common for a group’s behaviour in a social
dilemma to remain the same for long periods, but when it changes,
it changes quickly. This corroborates the results of SelflessLearner
and LevelLearner following actor-critic. The recover mechanism
they learn also has this property of moving quickly from wide-
spread defection to widespread cooperation and vice versa. The
difference is that the recover mechanism does not allow the group
to stabilise in widespread defection.

6 CONCLUSIONS
In our experiments, we observed that increasing the public goods
multiplier it is possible to achieve widespread cooperation. As the
public goods multiplier decreases and the number of players in-
crease, players stop cooperating. Hence the importance of develop-
ing more complex strategies to improve group cooperation, even
in non-abundant environments.

We show that the parameters α ,γ and ϵ have a significant impact
on cooperation: the low values of learning rate α and exploration ϵ
mean that changes are taken slowly or infrequently, so that knowl-
edge is accumulated over time, giving time for the environment
to adjust; a high discounting factor γ suggests that cooperation
thrives when individuals value long-term gains over short-term
ones.

Interestingly, our results also suggest that cognition plays a key
role in the learning process and the emerging levels of cooper-
ation. Indeed, cooperation emerges as a result of the combined
effect of increasing the state space size and adopting more com-
plex policies. By only enhancing cognition, we could move from
35% of cooperation, achieved by our baseline, MajorTD4 follow-
ing ϵ-greedy (ϵ = 0.001), to 80% of cooperation with LevelLearner
following actor-critic (αP = 0.05). Besides the improvement in co-
operation, there is also a considerable improvement in exploration,
from 3.81± 14.92 to 25.34± 8.28 strategy changes. This means that
the player with higher cognition tries out more options and finds a
better strategy consistently, as the low standard deviations on table
2c suggest.

Moreover, different learning processes lead to distinct behavioural
patterns. For instance, two popular approaches to improving coop-
eration rely on incentives for others to cooperate, as TFT [1], and
recover frommutual defection, asWSLS [16]. When analysing what
the MajorTD4 variations learned, the most important strategies are
S05, S15 = ALLC and S10 = TFT . Cooperation is higher for high
frequencies of S05 and ALLC, and low frequencies of TFT. Neverthe-
less, the dynamic of these groups is based on S05 giving incentives
to other players to play ALLC, by cooperating when only a few
do. On the other hand, SelflessLeaner and LevelLearner following
actor-critic, focus more on developing a recover mechanism that
allows the group to move quickly from widespread defection to
widespread cooperation. These differences may also explain why
the behaviour of those agents is so different when varying αP , as
shown in figure 7.

Ourwork also highlights the learning of different strategies when
moving from pairwise interactions to group interactions. While
in 2-player is dominated by reciprocity (e.g., TFT strategies), in
N-person interactions strategies focus on the recovery from mutual
defection (e.g., WSLS). TFT-like strategies are solely adopted by
RL players in N-player interactions when a few alternatives are
explored, or when converging to low cooperation rates, which may
indicate that this is indeed a sub-optimum strategy for the NPD.
When agents have sufficient information and reasoning capacity,
they explore more and converge to a recover mechanism strategy.
These strategies overcome one of the reasons to defect in defection
dominance dilemmas: the fear of being exploited [13]. However,
it does not solve the other, the temptation to explore others. This
result in groups that achieve a safe state to cooperate by allowing a
small number of free riders.

The dilemma addressed here is one among many of relevance to
human cooperation. Future work may address different forms of
non-linear returns [18, 19], structured populations [5, 20, 27], and
more complex RL algorithms [6] and exploration policies, closing
the gap between this simple, yet illuminating models, and real-life
scenarios in which conflicts of interests and free-riding prevail.
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