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ABSTRACT
Multi-agent coordination is prevalent in many real-world applica-

tions. However, such coordination is challenging due to its com-

binatorial nature. An important observation in this regard is that

agents in the real world often only directly affect a limited set

of neighbouring agents. Leveraging such loose couplings among

agents is key to making coordination in multi-agent systems fea-

sible. In this work, we focus on learning to coordinate. Specifi-

cally, we consider the multi-agent multi-armed bandit framework,

in which fully cooperative loosely-coupled agents must learn to

coordinate their decisions to optimize a common objective. We

propose multi-agent Thompson sampling (MATS), a new Bayesian

exploration-exploitation algorithm that leverages loose couplings.

We provide a regret bound that is sublinear in time and low-order

polynomial in the highest number of actions of a single agent for

sparse coordination graphs. Additionally, we empirically show that

MATS outperforms the state-of-the-art algorithm, MAUCE, on two

synthetic benchmarks, and a novel benchmark with Poisson dis-

tributions. An example of a loosely-coupled multi-agent system is

a wind farm. Coordination within the wind farm is necessary to

maximize power production. As upstream wind turbines only affect

nearby downstream turbines, we can use MATS to efficiently learn

the optimal control mechanism for the farm. To demonstrate the

benefits of our method toward applications we apply MATS to a

realistic wind farm control task. In this task, wind turbines must co-

ordinate their alignments with respect to the incoming wind vector

in order to optimize power production. Our results show that MATS

improves significantly upon state-of-the-art coordination methods

in terms of performance, demonstrating the value of using MATS

in practical applications with sparse neighbourhood structures.

KEYWORDS
multi-agent; multi-armed bandits; Thompson sampling; coordina-

tion graphs

1 INTRODUCTION
Multi-agent decision coordination is prevalent in many real-world

applications, such as traffic light control [39], warehouse commis-

sioning [11] and wind farm control [14, 37]. Often, such settings

can be formulated as coordination problems in which agents have

to cooperate in order to optimize a shared team reward [5].

Handling multi-agent settings is challenging, as the size of the

joint action space scales exponentially with the number of agents in

the system. Therefore, an approach that directly considers all agents’

actions jointly is computationally intractable. This has made such

coordination problems the central focus in the planning literature

[15–17, 22]. Fortunately, in real-world settings agents often only

directly affect a limited set of neighbouring agents. This means

that the global reward received by all agents can be decomposed

into local components that only depend on small subsets of agents.

Exploiting such loose couplings is key in order to keep multi-agent

decision problems tractable [9].

In this work, we consider learning to coordinate in multi-agent

systems. For example, consider a wind farm control task, which is

comprised of a set of wind turbines, and we aim to maximize the

farm’s total productivity. When upstream turbines directly face the

incoming wind stream, energy is extracted from wind. This reduces

the productivity of downstream turbines, potentially damaging the

overall power production. However, turbines have the option to

rotate, in order to deflect the turbulent flow away from turbines

downwind [35]. Due to the complex nature of the aerodynamic

interactions between the turbines, constructing a model of the en-

vironment and deriving a control policy using planning techniques

is extremely challenging [27]. Instead, a joint control policy among

the turbines can be learned to effectively maximize the productivity

of the wind farm. The system is loosely coupled, as redirection only

directly affects adjacent turbines.

While most of the literature only considers approximate rein-

forcement learning methods for learning in multi-agent systems, it

has recently been shown [4] that it is possible to achieve theoretical

bounds on the regret (i.e., how much reward is lost due to learning).

In this work, we use the multi-agent multi-armed bandit problem

definition, and improve upon the state of the art. Specifically, we

propose the multi-agent Thompson sampling (MATS) algorithm,

which exploits loosely-coupled interactions in multi-agent systems.

The loose couplings are formalized as a coordination graph, which
defines for each pair of agents whether their actions depend on

each other. We assume the graph structure is known beforehand,

which is the case in many real-world applications with sparse agent

interactions (e.g., wind farm control).



Our method leverages the exploration-exploitation mechanism

of Thompson sampling (TS). TS has been shown to be highly com-

petitive to other popular methods, e.g., UCB [8]. Recently, theo-

retical guarantees on its regret have been established [1], which

renders the method increasingly popular in the literature. Addi-

tionally, due to its Bayesian nature, problem-specific priors can be

specified. We argue that this has strong relevance in many practical

fields, such as advertisement selection [8] and influenza mitigation

[24, 25].

We provide a finite-time Bayesian regret analysis and prove that

the upper regret bound of MATS is low-order polynomial in the

number of actions of a single agent for sparse coordination graphs

(Corollary 4.6). This is a significant improvement over the exponen-

tial bound of classic TS, which is obtained when the coordination

graph is ignored [1]. We show that MATS improves upon the state

of the art in various synthetic settings. Finally, we demonstrate that

MATS achieves high performance on a realistic wind farm control

task, in which multiple wind turbines have to be jointly aligned to

maximize the total power production.

We define the problem setting, the multi-armed multi-agent ban-

dit, in Section 2 and describe our method, MATS, in Section 3. We

provide a theoretical and empirical analysis of MATS in Sections 4

and 5, respectively. Then, we apply our method to a realistic wind

farm control task in Section 6. Next, we discuss the results in Sec-

tion 7. Finally, we compare with related work in Section 8 and

conclude that MATS achieves state-of-the-art performance, both

empirically and theoretically, in Section 9.

2 PROBLEM STATEMENT
In this work, we adopt themulti-agentmulti-armed bandit (MAMAB)

setting [4, 32]. A MAMAB is similar to the multi-armed bandit for-

malism [34], but considers multiple agents factored into groups.

When the agents have pulled a joint arm, each group receives a

reward. The goal shared by all agents is to maximize the total sum

of rewards. Formally,

Definition 2.1. A multi-agent multi-armed bandit (MAMAB) is a

tuple ⟨D,A, f ⟩ where

• D is the set ofm enumerated agents. This set is factorized

into ρ, possibly overlapping, subsets of agents De
.

• A = A1 × · · · × Am is the set of joint actions, or joint arms,

which is the Cartesian product of the sets of actions Ai for

each of them agents in D. We denote Ae
as the set of local

joint actions, or local arms, for the group De
.

• f (a) is a stochastic function providing a global reward when

a joint arm, a ∈ A, is pulled. The global reward function is

decomposed into ρ noisy, observable and independent local

reward functions, i.e., f (a) =
∑ρ
e=1 f

e (ae ). A local function

f e only depends on the local arm ae of the subset of agents

in De
.

We denote the mean reward of a joint arm as µ (a) =
∑ρ
e=1 µ

e (ae ).

For simplicity, we refer to the ith agent by its index i .

The dependencies between the local reward functions and the

agents are described as a coordination graph [16].

Definition 2.2. A coordination graph is a bipartite graph G =
⟨D, { f e }

ρ
e=1,E⟩, whose nodes D are agents and components of a

factored reward function f =
∑ρ
e=1 f

e
, and an edge (i, f e ) ∈ E

exists if and only if agent i influences component f e .

The dependencies in a MAMAB can be described by setting E =
{(i, f e ) | i ∈ De }.

In this setting, the objective is to minimize the expected cumula-

tive regret [2], which is the cost incurred when pulling a particular

joint arm instead of the optimal one.

Definition 2.3. The expected cumulative regret of pulling a se-

quence of joint arms until time step T according to policy π is

E [R (T ,π )] ≜ E


T∑
t=1

∆(at )
������
π


(1)

with

∆(at ) ≜ µ (a∗) − µ (at )

=

ρ∑
e=1

µe (ae∗ ) − µe (aet ),
(2)

where a∗ is the optimal joint arm and at is the joint arm pulled at

time t . For the sake of brevity, we will omit π when the context is

clear.

Cumulative regret can be minimized by using a policy that con-

siders the full joint arm space, thereby ignoring loose couplings

between agents. This leads to a combinatorial problem, as the joint

arm space scales exponentially with the number of agents. There-

fore, loose couplings need to be taken into account whenever pos-

sible.

3 MULTI-AGENT THOMPSON SAMPLING
We propose the multi-agent Thompson sampling (MATS) algorithm

for decision making in loosely-coupled multi-agent multi-armed

bandit problems. Consider a MAMAB with groups De
(Defini-

tion 2.1). The local means µe (ae ) are treated as unknown. Accord-

ing to the Bayesian formalism, we exert our beliefs over the local

means µe (ae ) in the form of a prior, Qe
ae (·). At each time step t ,

MATS draws a sample µet (a
e ) from the posterior for each group

and local arm given the history,Ht−1, consisting of local actions

and rewards associated with past pulls:

µet (a
e ) ∼ Qe

ae (· | H
e
t−1)

H e
t−1 ≜ {(a

e
i , f

e
i (aei ))}

t−1
i=1 .

(3)

Note that during this step, MATS samples directly the posterior over

the unknown local means, which implies that the sample µet (a
e )

and the unknown mean µe (ae ) are independent and identically

distributed at time step t .
Thompson sampling (TS) chooses the arm with the highest sam-

ple, i.e.,

at = argmax

a
µt (a). (4)

However, in our case, the expected reward is decomposed into

several local means. As conflicts between overlapping groups will

arise, the optimal local arms for an agent in two groups may differ.

Therefore, we must define the argmax-operator to deal with the
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factored representation of a MAMAB, while still returning the full

joint arm that maximizes the sum of samples, i.e.,

at = argmax

a

ρ∑
e=1

µet (a
e ). (5)

To this end, we use variable elimination (VE), which computes

the joint arm that maximizes the global reward without explicitly

enumerating over the full joint arm space [16]. Specifically, VE

consecutively eliminates an agent from the coordination graph,

while computing its best response with respect to its neighbours.

VE is guaranteed to return the optimal joint arm and has a compu-

tational complexity that is combinatorial in terms of the induced

width of the graph, i.e., the number of neighbours of an agent at

the time of its elimination. However, as the method is typically

applied to a loosely-coupled coordination graph, the induced width

is generally much smaller than the size of the full joint action space,

which renders the maximization problem tractable [16, 17]. Ap-

proximate efficient alternatives exist, such as max-plus [38], but

using them will invalidate the proof for the Bayesian regret bound

(Theorem 4.5).

Finally, the joint arm that maximizes Equation 5,at , is pulled and
a reward f et (a

e
t ) will be obtained for each group. MATS is formally

described in Algorithm 1.

Data: Prior Qe
ae per group De

and local action ae

H0 ← {}

for t ∈ [1..T ] do
∀e ∈ [1..ρ] ,ae ∈ Ae

:

µet (a
e ) ∼ Qe

ae ( · | Ht−1)

at ← argmaxa
∑ρ
e=1 µ

e
t (a

e ) using VE

⟨f et (a
e
t )⟩

ρ
e=1 ← Pull joint arm at

Ht ← Ht−1 ∪
{
⟨aet , f

e
t (a

e
t )⟩

ρ
e=1

}

end
Algorithm 1:MATS

MATS belongs to the class of probability matching methods [23].

Definition 3.1. Given historyHt−1, the probability distribution

of the pulled arm at is equal to the probability distribution of the

optimal arm a∗. Formally,

P (at = · | Ht−1) = P (a∗ = · | Ht−1). (6)

Intuitively, MATS samples the local mean rewards according to

the beliefs of the user at each time step, and maximizes over those

means to find the optimal joint arm according to Definition 2.1.

This process is conceptually similar to traditional TS [34].

4 BAYESIAN REGRET ANALYSIS
Manymulti-agent systems are composed of locally connected agents.

When formalized as a MAMAB (Definition 2.1), our method is able

to exploit these local structures during the decision process. We

provide a regret bound for MATS that scales sublinearly with a

factor ÃT , where Ã is the total number of local arms.

Consider a MAMAB ⟨D,A, f ⟩ with ρ groups and the following

assumption on the rewards:

Assumption 4.1. The global rewards have a mean between 0 and
1, i.e.,

µ (a) ∈ [0, 1],∀a ∈ A.

Assumption 4.2. The local rewards shifted by their mean are
σ -subgaussian distributed, i.e., ∀e ∈ [1..ρ],ae ∈ Ae ,

E
[
exp

(
t ( f e (ae ) − µe (ae ))

)]
≤ exp(0.5σ 2t2).

We maintain the pull counters net−1 (a
e ) and estimated means

µ̂et−1 (a
e ) for local arms ae .

Consider the event ET , which states that, until time step T , the
differences between the local sample means and true means are

bounded by a time-dependent threshold, i.e.,

ET ≜
(
∀e,ae , t : |µ̂et−1 (a

e ) − µe (ae ) | ≤ cet (a
e )

)
(7)

with

cet (a
e ) ≜

√
2σ 2

log(δ−1)

net−1 (a
e )
. (8)

where δ is a free parameter that will be chosen later. We denote the

complement of the event by ET .

Lemma 4.3. (Concentration inequality) The probability of exceed-
ing the error bound on the local sample means is linearly bounded by
ÃTδ . Specifically,

P (ET ) ≤ 2ÃTδ . (9)

Proof. Using the union bound (U), we can bound the probability

of observing event ET as

P (ET )
(7)
= P

(
∃t , e,ae : |µ̂et−1 (a

e ) − µe (ae ) | > cet (a
e )

)
(U)
≤

T∑
t=1

ρ∑
e=1

∑
ae ∈Ae

P
(���µ̂et−1 (ae ) − µe (ae )��� > cet (a

e )
)
.
(10)

The estimated mean µ̂et−1 (a
e ) is a weighted sum of net−1 (a

e ) ran-
dom variables distributed according to a σ -subgaussian with mean

µe (ae ). Hence, Hoeffding’s inequality (H) is applicable [36].

P
(���µ̂et−1 (ae ) − µe (ae )��� > cet (a

e ) ��� µ
e (ae )

)
(H)
≤ 2 exp

(
−
net−1 (a

e )

2σ 2
(cet (a

e ))2
)

(8)
= 2 exp

(
−
net−1 (a

e )

2σ 2

2σ 2
log(δ−1)

net−1 (a
e )

)
= 2 exp

(
− log(δ−1)

)
= 2δ .

(11)

Therefore, the following concentration inequality on ET holds:

P (ET ) ≤
T∑
t=1

ρ∑
e=1

∑
ae ∈Ae

2δ = 2ÃTδ . (12)

□
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Lemma 4.4. (Bayesian regret bound under ET ) Provided that the
error bound on the local sample means is never exceeded until time T ,
the Bayesian regret bound, when using the MATS policy π , is of the
order

E [R (T ,π ) | ET ] ≤

√
32σ 2ÃρT log(δ−1). (13)

Proof. Consider this upper bound on the sample means:

ut (a) ≜
ρ∑
e=1

µ̂et−1 (a
e ) + cet (a

e ). (14)

Given historyHt−1, the statistics µ̂
e
t−1 (a

e ) andnet−1 (a
e ) are known,

rendering ut (·) a deterministic function. Therefore, the probability

matching property of MATS (Equation 6) can be applied as follows:

E [ut (at ) | Ht−1] = E [ut (a∗) | Ht−1] .
(15)

Hence, using the tower-rule (T), the regret can be bounded as

E


T∑
t=1

∆(at ) | ET



(T)
= E



T∑
t=1
E [µ (a∗) − µ (at ) | Ht−1, ET ]



= E


T∑
t=1
E [µ (a∗) − ut (at ) | Ht−1, ET ]

+

T∑
t=1
E [ut (at ) − µ (at ) | Ht−1, ET ]


(15)
= E



T∑
t=1
E [µ (a∗) − ut (a∗) | Ht−1, ET ]

+

T∑
t=1
E [ut (at ) − µ (at ) | Ht−1, ET ]


.

(16)

Note that the expression µ (a∗) − ut (a∗) is always negative under
ET , i.e.,

µ (a∗) − ut (a∗)
(14)
=

ρ∑
e=1

µe (ae∗ ) − µ̂et−1 (a
e
∗ ) − c

e
t (a

e
∗ )

(7)
≤

ρ∑
e=1

cet (a
e
∗ ) − c

e
t (a

e
∗ ) = 0,

(17)

while ut (at ) − µ (at ) is bounded by twice the threshold cet (a
e ), i.e.,

ut (at ) − µ (at )
(14)
=

ρ∑
e=1

µ̂et−1 (a
e
t ) + c

e
t (a

e
t ) − µe (aet )

(7)
≤

ρ∑
e=1

cet (a
e
t ) + c

e
t (a

e
t ) = 2

ρ∑
e=1

cet (a
e
t ).

(18)

Thus, Equation 16 can be bounded as

E


T∑
t=1

∆(at ) | ET


≤ 2

T∑
t=1

ρ∑
e=1

cet (a
e
t )

≤ 2

T∑
t=1

ρ∑
e=1

√
2σ 2

log(δ−1)

net−1 (a
e
t )

= 2

ρ∑
e=1

∑
ae ∈Ae

T∑
t=1
I{aet = ae }

√
2σ 2

log(δ−1)

net−1 (a
e )
,

(19)

where I{·} is the indicator function. The terms in the summation

are only non-zero at the time stepswhen the local actionae is pulled,
i.e., when I{aet = ae } = 1. Additionally, note that only at these

time steps, the counter net (a
e ) increases by exactly 1. Therefore,

the following equality holds:

T∑
t=1
I{aet = ae }

√
(net−1 (a

e ))−1 =

neT (a
e )∑

k=1

√
k−1.

(20)

The function

√
k−1 is decreasing and integrable. Hence, using the

right Riemann sum, √
k−1 ≤

∫ k

k−1

√
x−1dx . (21)

Combining Equations 19-21 leads to a bound

E


T∑
t=1

∆(at )
������
ET



(19)
= 2

ρ∑
e=1

∑
ae ∈Ae

T∑
t=1
I{aet = ae }

√
2σ 2

log(δ−1)

net−1 (a
e )

(20)
=

√
8σ 2

log(δ−1)

ρ∑
e=1

∑
ae ∈Ae

neT (a
e )∑

k=1

√
k−1

(21)
≤

√
8σ 2

log(δ−1)

ρ∑
e=1

∑
ae ∈Ae

∫ neT (a
e )

0

√
x−1dx

=

√
8σ 2

log(δ−1)

ρ∑
e=1

∑
ae ∈Ae

√
4neT (a

e ).

(22)

We use the relationship | |x| |1 ≤
√
n | |x| |2 between the 1- and 2-norm

of a vector x, where n is the number of elements in the vector, as

follows:

ρ∑
e=1

∑
ae ∈Ae

����

√
neT (a

e )
���� ≤

√
Ã

√√√ ρ∑
e=1

∑
ae ∈Ae

(√
neT (a

e )
)
2

. (23)

Finally, note that the sum of all counts neT (a
e ) is equal to the total

number of local pulls done by MATS until time T , i.e.,

ρ∑
e=1

∑
ae ∈Ae

neT (a
e ) = ρT . (24)

4



Using the Equations 22-24, the complete regret bound under ET is

given by

E


T∑
t=1

∆(at ) | ET


(22)
≤

√
8σ 2

log(δ−1)

ρ∑
e=1

∑
ae ∈Ae

√
4neT (a

e )

(23)
≤

√
32σ 2

log(δ−1)

√
Ã

√√√ ρ∑
e=1

∑
ae ∈Ae

(√
neT (a

e )
)
2

(24)
=

√
32σ 2

log(δ−1)

√
Ã
√
ρT .

(25)

□

Theorem 4.5. Let ⟨D,A, f ⟩ be a MAMAB. If Assumptions 4.1
and 4.2 hold, then the MATS policy π satisfies a Bayesian regret bound
of

E [R (T ,π )] ≤

√
64σ 2ÃρT log(ÃT ) +

2

Ã

∈ O

(√
σ 2ÃρT log(ÃT )

)
.

(26)

Proof. Using the law of excluded middle (M) and the fact that

∆(at ) and P (ET | Ht−1) are between 0 and 1 (B), the regret can be

decomposed as

E


T∑
t=1

∆(at )


(M)
= E



T∑
t=1

∆(at ) | ET


P (ET ) + E



T∑
t=1

∆(at ) | ET


P (ET )

(B)
≤ E



T∑
t=1

∆(at ) | ET


+TP (ET ).

(27)

Then, according to Lemmas 4.3 and 4.4 (L), we have

E


T∑
t=1

∆(at )


(27)
≤ E



T∑
t=1

∆(at ) | ET


+TP (ET )

(L)
≤

√
32σ 2ÃρT log(δ−1) + 2ÃT 2δ .

(28)

Finally, choosing δ = (ÃT )−2, we conclude that

E [R (T ,π )]
(28)
≤

√
32σ 2ÃρT log(δ−1) + 2ÃT 2δ

≤

√
64σ 2ÃρT log

(
ÃT

)
+

2

Ã

∈ O

(√
σ 2ÃρT log(ÃT )

)
.

(29)

□

Corollary 4.6. If |Ai | ≤ k for all agents i , and if |De | ≤ d for
all groups De , then

E [R (T ,π )] ∈ O

(
ρ

√
σ 2kdT log(ρkdT )

)
. (30)

Proof. Ã =
∑ρ
e=1 |A

e | =
∑ρ
e=1

∏
i ∈De |Ai | ≤ ρkd . □

Corollary 4.6 tells us that the regret is sub-linear in terms of time

T and low-order polynomial in terms of the largest action space of

a single agent when the number of groups and agents per group are

small. This reflects the main contribution of this work. When agents

are loosely coupled, the effective joint arm space is significantly

reduced, andMATS provides amechanism that efficiently deals with

such settings. This is a significant improvement over the established

classic regret bounds of vanilla TS when the MAMAB is ‘flattened’

and the factored structure is neglected [23, 30]. The classic bounds

scale exponentially with the number of agents, which renders the

use of vanilla TS unfeasible in many multi-agent environments.

5 EXPERIMENTS
We evaluate the performance of MATS on the benchmark prob-

lems proposed in the paper that introduced Multi-Agent Upper-

Confidence Exploration (MAUCE) [4], which is the current state-of-

the-art algorithm for multi-agent bandit problems, and one novel

setting that falls outside the domain of the theoretical guarantees

for both MAUCE and MATS. First, we evaluate the performance

of MATS on two benchmarks that were introduced in the MAUCE

paper, i.e., Bernoulli 0101-Chain and Gem Mining. We compare

against a random policy (rnd), Sparse Cooperative Q-Learning

(SCQL) [21] and the state-of-the-art algorithm, MAUCE [4]. For

SCQL and MAUCE, we use the same exploration parameters as

in previous work [4]. For MATS, we always use non-informative

Jeffreys priors, which are invariant toward reparametrization of

the experimental settings [29]. Although including additional prior

domain knowledge could be useful in practice, we use well-known

non-informative priors in our experiments to compare fairly with

other state-of-the-art techniques. Then, we introduce a novel vari-

ant of the 0101-Chain with Poisson-distributed local rewards. A

Poisson distribution is supergaussian, meaning that its tails tend

slower towards zero than the tails of any Gaussian. Therefore, both

the assumptions made in Theorem 4.5 and in the established regret

bound of MAUCE are violated. Additionally, as the rewards are

highly skewed, we expect that the use of symmetric exploration

bounds in MAUCE will often lead to either over- or underexplo-

ration of the local arms. We assess the performance of both methods

on this benchmark.

5.1 Bernoulli 0101-Chain
The Bernoulli 0101-Chain consists of n agents and n−1 local reward
distributions. Each agent can choose between two actions: 0 and

1. In the coordination graph, agents i and i + 1 are connected to a

local reward f i (ai ,ai+1). Thus, each pair of agents should locally

coordinate in order to find the best joint arm. The local rewards are

drawn from a Bernoulli distribution with a different success proba-

bility per group. These success probabilities are given in Table 1.

The optimal joint action is an alternating sequence of zeros and

ones, starting with 0.

To ensure that the assumptions made in the regret analyses of

MAUCE andMATS hold, we divide the local rewards by the number

of groups, such that the global rewards are between 0 and 1.

We provide non-informative Jeffreys priors on the unknown

means to MATS, which for the Bernoulli likelihood is a Beta prior,
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Figure 1: Cumulative normalized regret averaged over 100 runs for the (a) Bernoulli 0101-Chain, (b) GemMining and (c) Poisson
0101-Chain. Both the mean (line) and standard deviation (shaded area) are plotted.

f i ∼ B ai+1 = 0 ai+1 = 1

ai = 0 0.75 1

ai = 1 0.25 0.9

Table 1: Bernouilli 0101 Chain – The unscaled local reward
distributions of agents i and i +1, where i is even. Each entry
shows the success probability for each local arm of agents i
and i +1, where i is even. The table is transposed for the case
where i is odd.

B (α = 0.5, β = 0.5) [26]. The results for the Bernoulli 0101-chains
are shown in Figure 1(a).

5.2 Gem Mining
In the GemMining problem, a mining company wants to excavate a

set ofmines for gems (i.e., local rewards). The goal is tomaximize the

total number of gems found over all mines. However, the company’s

workers live in separate villages (i.e., agents), and only one van

per village is available. Therefore, each village needs to decide to

which mine it should send its workers (i.e., local action). Moreover,

workers can only commute to nearby mines (i.e., coordination

graph). Hence, a group can be constructed per mine, consisting

of all agents that can travel toward the mine.

The reward is drawn from a Bernoulli distribution, where the

probability of finding a gem at a mine is 1.03w−1p withw the num-

ber of workers at the mine and p a base probability that is sampled

uniformly random from the interval [0, 0.5] for each mine. When

more workers are excavating a mine, the probability of finding

a gem increases. Each village is populated by a number sampled

uniformly random from [1..5]. The coordination graph is generated

by sampling for each village i a number of minesmi in [2..4] to

which it should be connected. Then, each village i is connected to

the mines i to (i +mi − 1). The last village is always connected to 4
mines.

We provide non-informative Jeffreys priors on the unknown

means to MATS, which for the Bernoulli likelihood is a Beta prior,

B (α = 0.5, β = 0.5) [26]. The results for the Gem Mining problem

are shown in Figure 1(b).

5.3 Poisson 0101-Chain
We introduce a novel benchmark with Poisson distributed local

rewards, for which the established regret bounds of MATS and

MAUCE do not hold. Similar to the Bernoulli 0101-Chain, agents

need to coordinate their actions in order to obtain an alternating

sequence of zeroes and ones. However, as the rewards are highly

skewed and supergaussian, this setting is much more challenging.

The means of the Poisson distributions are given in Table 2. We

also divide the rewards by the number of groups, similar to the

Bernoulli 0101-Chain.

f i ∼ P ai+1 = 0 ai+1 = 1

ai = 0 0.1 0.3

ai = 1 0.2 0.1

Table 2: Poisson 0101 Chain – The unscaled local reward dis-
tributions of agents i and i + 1. Each entry shows the mean
for each local arm of agents i and i + 1.

For MAUCE, an exploration parameter must be chosen. This ex-

ploration parameter denotes the range of the observed rewards. As a

Poisson distribution has unbounded support, we rely on percentiles

of the reward distribution. Specifically, as 95% of the rewards when

pulling the optimal arm falls below 1, we choose 1 as the exploration

parameter of MAUCE. For MATS we use non-informative Jeffreys

priors on the unknown means, which for the Poisson likelihood is

a Gamma prior, G (α = 0.5, β = 0) [26]. The results are shown in

Figure 1(c).

6 WIND FARM CONTROL APPLICATION
We demonstrate the benefits of MATS on a state-of-the-art wind

farm simulator and compare its performance to MAUCE and SCQL.

A wind farm consists of a group of wind turbines, instantiated to

extract energy from wind. From the perspective of a single turbine,

6



aligning with the incoming wind vector usually ensures the high-

est productivity. However, translating this control policy directly

towards an entire wind farm may be sub-optimal. As wind passes

through the farm, downstream turbines observe a significantly

lower wind speed. This is known as the wake effect, which is due

to the turbulence generated behind operational turbines.

In recent work, the possibility of deflecting wake away from

the farm through rotor misalignment is investigated [35]. While a

misaligned turbine produces less energy on its own, the group’s

total productivity is increased. Physically, the wake effect reduces

over long distances, and thus, turbines tend to only influence their

neighbours. We can use this domain knowledge to define groups

of agents and organize them in a graph structure. Note that the

graph structure depends on the incoming wind vector. Nevertheless,

atmospheric conditions are typically discretized when analyzing

operational regimes [19], thus, a graph structure can be made inde-

pendently for each possible incoming discretized wind vector. We

construct a graph structure for one possible wind vector.

We demonstrate our method on a virtual wind farm, consisting

of 11 turbines, of which the layout is shown in Figure 2. We use

the state-of-the-art WISDEM FLORIS simulator [28]. For MATS, we

WIND

Figure 2: Wind farm layout – Dependency graph where the
nodes are the turbines and the edges describe the dependen-
cies between the turbines. The incoming wind is denoted by
an arrow.

assume the local power productions are sampled from Gaussians

with unknown mean and variance, which leads to a Student’s t-

distribution on the mean when using a Jeffreys prior [18]. The

results for the wind farm control setting are shown in Figure 3.

7 DISCUSSION
MATS is a Bayesian method, which means that it can leverage prior

knowledge about the data distribution. This property is highly

beneficial in many practical applications, e.g., influenza mitigation

[24, 25] and wind farm control [37].

Both MAUCE and MATS achieve sub-linear regret in terms of

time and low-order polynomial regret in terms of the number of

local arms for sparse coordination graphs. However, empirically,

MATS consistently outperforms MAUCE as well as SCQL. We can

see that MATS solves the Bernoulli 0101-Chain problem in only a

few time steps, while MAUCE still pulls many sub-optimal actions
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Figure 3: Cumulative normalized regret averaged over 10
runs forWind Farm task. Both themean (line) and standard
deviation (shaded area) are plotted.

after 10000 time steps (see Figure 1(a)). In the more challenging Gem

Mining problem, the cumulative regret of MAUCE is three times as

high as the cumulative regret of MATS around 40000 time steps (see

Figure 1(b)). In the wind farm control task, we can see that MATS

allowed for a five-fold increase of the normalized power productions

with respect to the state of the art (see Figure 3). We argue that the

high performance ofMATS is due to the ability to seamlessly include

domain knowledge about the shape of the reward distributions and

treat the problem parameters as unknowns. To highlight the power

of this property, we introduced the Poisson 0101-chain. In this

setting, the reward distributions are highly skewed, for which the

mean does not match the median. Therefore, in our case, since

the mean falls well above 50% of all samples, it is expected that

for the initially observed rewards, the true mean will be higher

than the sample mean. Naturally, this bias averages out in the limit,

but may have a large impact during the early exploration stage.

The high standard deviations in Figure 1(c) support this impact.

Although the established regret bounds of MATS and MAUCE do

not apply for supergaussian reward distributions, we demonstrate

that MATS exploits density information of the rewards to achieve

more targeted exploration. In Figure 1(c), the cumulative regret

of MATS stagnates around 7500 time steps, while the cumulative

regret of MAUCE continues to increase significantly. As MAUCE

only supports symmetric exploration bounds, it is challenging to

correctly assess the amount of exploration needed to solve the task.

Throughout the experiments, exploration constants had to be

specified for MAUCE, which were challenging to choose and in-

terpret in terms of the density of the data. In contrast, MATS uses

either statistics about the data (if available) or, potentially non-

informative, beliefs defined by the user. For example, in the wind

farm case, the spread of the data is unknown. MATS effectively

maintains a posterior on the variance and uses it to balance explo-

ration and exploitation, while still outperforming MAUCE with a

manually calibrated exploration range (see Figure 3).
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8 RELATEDWORK
Multi-agent reinforcement learning and planning with loose cou-

plings has been investigated in sequential decision problems [12,

17, 20, 31]. In sequential settings, the value function cannot be fac-

torized exactly. Therefore, it is challenging to provide convergence

and optimality guarantees. While for planning some theoretical

guarantees can be provided [31], in the learning literature the focus

has been on empirical validation [20]. In this work, we focus on

MAMABs, which are single-shot stateless problems. In such set-

tings, the reward function is factored exactly into components that

only depend on a subset of agents.

The combinatorial bandit [6, 7, 10, 13] is a variant of the multi-

armed bandit, in which, rather than one-dimensional arms, an arm

vector has to be pulled. In our work, the arms’ dimensionality cor-

responds to the number of agents in our system, and similarly to

combinatorial bandits, the number of arms exponentially increases

with this quantity. We consider a variant of this framework, called

the semi-bandit problem [3], in which local components of the

global reward are observable. Chen et. al (2013) constructed an

algorithm for this setting that assumes access to an (α , β )-oracle,
which provides a joint action that outputs a fraction α of the op-

timal expected reward with probability β . Instead, we assume the

availability of a coordination graph, which we argue is a reasonable

assumption in many multi-agent settings.

Sparse cooperative Q-learning is an algorithm that also assumes

the availability of a coordination graph [21]. However, although

strong experimental results are given, no theoretical guarantees

were provided. Later, the UCB-like algorithm, HEIST, for explo-

ration and exploitation in MAMABs was introduced [32], which

uses a message-passing scheme for resolving coordination graphs.

They provide some theoretical guarantees on the regret for prob-

lemswith acyclic coordination graphs.Multi-Agent Upper-Confidence

Exploration (MAUCE) [4] is a more general method that uses vari-

able elimination to resolve (potentially cyclic) coordination graphs.

MAUCE demonstrates high performance on a variety of bench-

marks and provides a tight theoretical upper bound on the regret.

MATS provides a Bayesian alternative to MAUCE based on Thomp-

son sampling (TS).

Our problem definition is related to distributed constraint opti-

mization (DCOP) problems [40]. In DCOP problems, multiple agents

control a set of variables in a distributed manner under a set of con-

straints. The objective is the same as for a MAMAB, i.e., optimize

the sum over group rewards. However, in DCOPs, the rewards are

assumed to be known beforehand. The Distributed Coordination

of Exploration and Exploitation (DCEE) framework [33] extends

this setting to unknown rewards, but considers the optimization of

the cumulative reward achieved over a time span, rather than of a

single-step reward. MAMABs, or MAB-DCOPs [32], consider the

optimization of a single-step expected reward over time.

In recent research on wind farm control, the impact of optimized

rotor alignments on power production is heavily investigated [35].

To search for the optimal alignments within the wind farm, data-

drivenmethods are usually adopted, where the turbines’ alignments

are perturbed iteratively until they locally converge [27]. When

optimizing the alignment of a wind turbine, only considering its

neighbours can significantly boost the learning speed [14]. MATS is

also able to leverage neighbourhood structures. In addition, rather

than random perturbation of the alignments, MATS leverages an

exploration-exploitation mechanism that is inspired by TS and vari-

able elimination, which allows for a global exploration mechanism

that targets the optimal alignment configuration, while retaining a

small regret during the learning process itself.

9 CONCLUSIONS
We proposed multi-agent Thompson sampling (MATS), a novel

Bayesian algorithm formulti-agentmulti-armed bandits. Themethod

exploits loose connections between agents to solve multi-agent

coordination tasks efficiently. Specifically, we proved that, for σ -
subgaussian rewards with bounded means, the expected cumulative

regret decreases sub-linearly in time and low-order polynomially

in the highest number of actions of a single agent when the co-

ordination graph is sparse. Empirically, we showed a significant

improvement over the state-of-the-art algorithm, MAUCE, on sev-

eral synthetic benchmarks. Additionally, we showed that MATS

can seamlessly be adapted to the available prior knowledge, and

achieves state-of-the-art performance on the Poisson 0101-Chain,

a new benchmark with supergaussian rewards. Finally, we demon-

strated that MATS achieves high performance on a realistic wind

farm control task, where the optimal rotor alignments of the wind

turbines need to be jointly optimized to maximize the farm’s power

production. In many practical applications, there exist sparse neigh-

bourhood structures between agents, and we have shown that

MATS is able to successfully exploit these structures, while lever-

aging prior knowledge about the data.
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