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ABSTRACT
Epidemics of infectious diseases are an important threat to public
health and global economies. Yet, the development of prevention
strategies remains a challenging process. For this reason, we investi-
gate a deep reinforcement learning approach to automatically learn
prevention strategies in an epidemiological model, in the context of
pandemic influenza. To this end, we construct a new epidemiologi-
cal meta-population model, with 379 patches, that balances between
model complexity and computational efficiency such that the use
of reinforcement learning techniques becomes attainable. First, we
set up a ground truth such that we can evaluate the performance of
the "Proximal Policy Optimization" algorithm to learn in a single
district of this epidemiological model. Next, we consider a larger
scale problem, by conducting an experiment where we aim to learn
a joint policy to control the districts in a community of 11 tightly
coupled districts, for which no ground truth can be established. This
experiment shows that deep reinforcement learning can be used to
learn mitigation policies in complex epidemiological models with a
large state space. Moreover, through this experiment, we demon-
strate that there can be an advantage to consider collaboration
between districts when designing prevention strategies.

KEYWORDS
multi-agent system, epidemic control, pandemic influenza, deep
reinforcement learning

1 INTRODUCTION
Epidemics of infectious diseases are an important threat to public
health and global economies. The most efficient way to combat
epidemics is through prevention. To develop prevention strategies
and to implement them as efficiently as possible, a good under-
standing of the complex dynamics that underlie these epidemics
is essential. To properly understand these dynamics, and to study
emergency scenarios, epidemiological models are necessary. Such
models enable us to make predictions and to study the effect of
prevention strategies in simulation. The development of preven-
tion strategies, which need to fulfil distinct criteria (i.a., prevalence,
mortality, morbidity, cost), remains a challenging process. For this
reason, we investigate a deep reinforcement learning (RL) approach
to automatically learn prevention strategies in an epidemiological
model. The use of model-free deep reinforcement learning is partic-
ularly interesting, as it allows us to set up a learning environment

in a complex epidemiological setting (i.e., large state space and
non-linear dependencies) while imposing few assumptions on the
policies to be learned. In this work, we conduct our experiments in
the context of pandemic influenza, where we aim to learn optimal
school closure policies to mitigate the epidemic.

Pandemic preparedness is important, as influenza pandemics
have made many victims in the (recent) past [35] and the ongo-
ing COVID-19 epidemic is yet another reminder of this fact [51].
Contrary to seasonal influenza epidemics, an influenza pandemic
is caused by a newly emerging virus strain that can become pan-
demic by spreading rapidly among naive human hosts (i.e., human
hosts with no prior immunity) worldwide [35]. This means that
at the start of the pandemic no vaccine will be available and it
will take several months before vaccine production can commence
[45]. For this reason, learning optimal strategies of non-therapeutic
intervention measures, such as school closure policies, is of great
importance to mitigate pandemics [32].

To meet this objective, we consider a reinforcement learning ap-
proach. However, as the state-of-the-art of reinforcement learning
techniques requiremany interactionswith the environment in order
to converge, our first contribution entails a realistic epidemiological
model that still has a favourable computational performance.

Specifically, we construct a meta-population model that con-
sists out of a set of 379 interconnected patches, where each patch
corresponds to an administrative region in Great Britain and is
internally represented by an age-structured stochastic compart-
mental model. To conduct our experiments, we establish a Markov
Decision Process with a state space that directly corresponds to our
epidemiological model, an action space that allows us to open and
close schools on a weekly basis, a transition function that follows
the epidemiological model’s dynamics, and a reward function that
is targeted to the objective of reducing the attack rate (i.e., the pro-
portion of the population that was infected). In this work, we will
use "Proximal Policy Optimization" (PPO) [39] to learn the school
closure policies.

First, we set up an experiment in an epidemiological model that
covers a single administrative district. This setting enables us to
specify a ground truth that allows us to empirically assess the
performance of the policies learned by PPO. In this analysis, we
consider different values for the basic reproductive number R0
(Definition 1.1) and the population composition (i.e., proportion of
adults, children, elderly, adolescents) of the district. Both parameters
induce a significant change of the epidemic model’s dynamics.



Definition 1.1 (Basic reproductive number). The basic reproduc-
tive number, R0, is the number of infections that is, on average,
generated by one single infected individual that is placed in an
otherwise fully susceptible population.

Through these experiments, we demonstrate the potential of
deep reinforcement learning algorithms to learn policies in the
context of complex epidemiological models, opening the prospect
to learn in even more complex stochastic models with large action
spaces. In this regard, we consider a large scale setting where we
examine whether there is an advantage to consider the collabo-
ration between districts when designing school closure policies.
We conduct an experiment in our epidemiological model with 379
districts and attempt to learn a joint policy to control the districts
in the Cornwall-Devon community, a set of 11 tightly coupled dis-
tricts. To this end, we assign an agent to each of the 11 districts of
the Cornwall-Devon community and use a reinforcement learning
approach to learn a joint policy. We compare this joint policy to a
non-collaborative policy (i.e., aggregated independent learners).

2 RELATEDWORK
The closing of schools is an effective way to limit the spread of an
influenza pandemic [32]. For this reason, the use of school closures
as a mitigation strategy has been explored in variety of modelling
studies [4, 5, 8, 10, 16, 19–21, 34], of which the work by Germann
et al. [16] is the most recent and comprehensive study.

The concept to learn dynamic policies by formulating the de-
cision problem as a Markov decision process (MDP) was first in-
troduced in [47]. The proposed technique was used to investigate
dynamic tuberculosis case-finding policies in HIV/tuberculosis co-
epidemics [48]. Later, the technique was extended towards amethod
to include cost-effectiveness in the analysis [49], and applied to
investigate mitigation policies (i.e., school closures and vaccines) in
the context of pandemic influenza in a simplified epidemiological
model. On the one hand, the work presented in [47, 49] uses a pol-
icy iteration algorithm to solve the MDP. On the other hand, the
use of on-line reinforcement learning techniques (e.g., TD-learning,
policy gradient) has only been explored to a limited extent1, and
motivated us to do the work presented in this manuscript. Note that
the "Deep Q-networks" algorithm was recently used to investigate
culling and vaccination in farms in a simple individual-based model
to delay the spread of viruses in a cattle population [36]. However,
to our best knowledge, the work presented in this manuscript is
the first attempt to use deep reinforcement learning algorithms
directly on a complex meta-population model. Furthermore, we
experimentally validate the performance of these algorithms using
a ground truth, in a variety of model settings (i.e., different cen-
sus compositions and different R0’s). This is the first validation of
this kind and it demonstrates the potential of on-line deep rein-
forcement learning techniques in the context of epidemic decision
making. Finally, we present a novel approach to investigate how
intervention policies can be improved by enabling collaboration
between different geographic districts, by formulating the setting
as a multi-agent problem, and by solving it using deep multi-agent
reinforcement learning algorithms.

1The recent perspective report by [50] reached the same conclusion.
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Figure 1: We depict an age-structured SEIR model that con-
siders two age groups (i.e., adults and children). This model
consists out of two SEIRmodels, one for each age group, that
are connected to represent mixing between the age groups
(yellow arrows). Note that it is also possible to mix within
the age groups. Note thatwe use two age groups in this figure
to provide a clear visualization of the model. In our actual
model, we consider four different age groups.

3 EPIDEMIOLOGICAL MODEL
We construct a meta-population model that consists out of 379
patches, where each patch represents one administrative region
in Great Britain. Great Britain consists out of three countries with
the following administrative regions: 325 districts in England, 22
unitary authorities in Wales and 32 council areas in Scotland. Each
patch consists out of a stochastic age-structured compartmental
model, which we describe in sub-section 3.1, and the different
patches are connected via a mobility model, as detailed in sub-
section 3.2. In sub-section 3.3 we discuss how we validate and
calibrate the model. We analyse the model’s computational com-
plexity and discuss the model’s performance in the Supplementary
Information.

3.1 INTRA-PATCH MODEL
We consider a stochastic SEIR compartmental model fromwhich we
sample trajectories. We first describe the model in terms of ordinary
differential equations (i.e., a deterministic representation) that we
than transform to stochastic differential equations [1] to make a
stochastic evaluation possible. An SEIR model divides the popula-
tion in a susceptible, exposed, infected and recovered compartment,
and is commonly used to model influenza epidemics [10]. More
specifically, we consider an age-structured SEIR model (see Figure 1
for a visualization) with a set of n disjoint age groups [10, 14]. This
model is formally described by this system of ordinary differential
equations (ODEs), defined for each age group i:

dSi
dt
= −ϕi (t)Si (t)

dEi
dt
= ϕi (t)Si (t) − ζ Ei (t)

dIi
dt
= ζ Ei (t) − γ Ii (t)

dRi
dt
= γ Ii (t).

(1)
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Every susceptible individual in age group i is subject to an age-
specific and time-dependent force of infection:

ϕi (t) =
n∑
j=1

βMi j (t)
Ij (t)

Nj (t)
, (2)

which depends on:

• The probability of transmission β when a contact occurs.
• The time-dependent contact matrixM , whereMi j (t) is the
average frequency of contacts that an individual in age group
i has with an individual in age group j [15].

• The frequency that contacts with infected individuals (in age
group j) occur: Ij (t)/Nj (t)

Once exposed, individuals move to the infected state according to
the latency rate ζ . Individuals recover from infection (i.e., get better
or die) at a recovery rate γ .

We omit vital dynamics (i.e., births and deaths that are not caused
by the epidemic) in this SEIR model, as the epidemic’s time scale is
short and we therefore assume that births and deaths will have a
limited influence on the epidemic process [41]. Therefore, at any
time:

Ni (t) = Si (t) + Ei (t) + Ii (t) + Ri (t), (3)

where the total population size Ni corresponds to age-specific cen-
sus data. Our model considers 4 age groups: children (0-4 years),
adolescents (5-18 years), adults (19-64 years) and elderly (65 years
and older).

Note that the contact frequency Mi j (t) is time-dependent, in
order to model school closures, i.e., a different contact matrix is
used for school term and school holiday. Following [10], we con-
sider conversational contacts, i.e., contacts for which physical touch
is not required. As we aim to model the effectiveness of school
closure interventions, we use the United Kingdom contact matrices
presented in [10], which encodes a contact matrix for both school
term and school holiday. These contact matrices are the result of an
internet-based social contact survey completed by a cohort of par-
ticipants [10]. The contact matrices encode for the same age groups
as mentioned before: children, adolescents, adults and elderly.

We defined the SEIR model in terms of a system of ordinary
differential equations which implies a deterministic evaluation of
the system. However, for predictions, stochastic models are pre-
ferred, as they to account for stochastic variation and allow us to
quantify uncertainty [25]. In order to sample trajectories from this
set of differential equations, we transform the system of ordinary
differential equations (ODEs) to a system of stochastic differential
equations (SDEs), using the transformation procedure presented by
Allen et al. [1]. This procedure introduces stochastic noise to the sys-
tem by adding a Wiener process to each transition in the ODE. We
evaluate the SDE at discrete time steps using the Euler-Maruyama
approximation method [1].

Each compartmental model is representative of one of the ad-
ministrative districts and as such the compartmental model is
parametrised with the census data of the respective district, i.e., pop-
ulation counts stratified by age groups.We use the 2011 United King-
dom census data made available by NOMIS (https://www.nomisweb.

co.uk). We present more details on the census data in the Supple-
mentary Information2.

3.2 BETWEEN-PATCH MODEL
Our model, that is comprised of a set of connected SEIR patches,
is inspired by the recent BBC pandemic model [27]. The BBC pan-
demic model was in its turn motivated by the model presented in
[17].

At each time step, our model checks whether a patch p be-
comes infected. This is modulated by the patch’s force of infection,
which combines the potential of the infected patches in the system,
weighted by a mobility model, that represents the commuting of
adults between the different patches:

ϕ̊p (t) =
∑
p′∈P

Mp′p · β ·

(
SAp (t)

)µ
· Ip′(t), (4)

where P is the set of patches in the model, Mp′p is the mobility
flux between patch p′ and p, β is the probability of transmission on
a contact, SAp (t) is the susceptible population of adults in patch p

at time t and its contribution is modulated by parameter µ (range
in [0, 1]), and Ip′(t) is the infectious potential of patch p′ at time t .
We define this infectious potential as,

Ip′(t) = IAp′(t) ·MAA, (5)

where IAp′(t) is the size at time t of the infectious adult population
in patch p′ and MAA is the average number of contacts between
adults, as specified in the contact matrix (see sub-section 3.1) This
infectious potential corresponds to infectious adult individuals that
commute from district p′ to district p.

M is a matrix based on the mobility dataset provided by NOMIS3.
This dataset describes the amount of commuting between the dis-
tricts in Great Britain.

In general, this between-patch model is constructed from first
principles i.e., census data, a mobility model, the number of infected
individuals and the transmission potential of the virus. However,
for the parameter µ that modulates the contribution of the suscepti-
bles in the receptive patch (while it is commonly used in literature
[11, 17, 26]) no such intuition is readily available. Therefore, this
parameter is typically fitted to match the properties of the epidemic
that is under investigation [11, 17, 26]. We will calibrate this param-
eter such that it can be used for a range of R0 values, as detailed in
the next sub-section.

Given this time-dependent force of infection, we model the event
that a patch becomes infected with a non-homogeneous Poisson
process [44]. As the process’ intensity depends on how the model
(i.e., the set of all patches) evolves, we cannot sample the time at
which a patch becomes infected a priori. Therefore, we determine
this time of infection using the time scale transformation algorithm
[6]. Details about this procedure can be found in Supplementary
Information. Following Klepac et al. [27], we assume that a patch
will become infected only once.

By using this time scale transformation algorithm and evaluat-
ing the stochastic differential equation at discrete time steps, we

2http://plibin-vub.github.io/epidemics-rl/supplement.pdf
3We use the NOMIS WU03UK dataset that was released in 2011.

3

https://www.nomisweb.co.uk
https://www.nomisweb.co.uk
http://plibin-vub.github.io/epidemics-rl/supplement.pdf


produced a model with favourable performance, i.e., we can run
about 2 simulation runs per second on a MacBook Pro.

3.3 CALIBRATION AND VALIDATION
Our objective is to construct a model that is representative for
contemporary Great Britain with respect to population census and
mobility trends. This model will be used to study school closure in-
tervention strategies for future influenza pandemics. While in many
studies [11, 17, 26] a model is created specifically to fit one epidemic
case, we aim for a model that is robust with respect to different
epidemic parameters, most importantly R0, the basic reproduction
number.

To validate our model according to these goals, we conduct
two experiments. In the first experiment, we compare our patch
model to an SEIR compartmental model that uses the same contact
matrix and age structure, but with homogeneous spatial mixing
(i.e., no spatial structure). While we do not expect our model to
behave exactly like the compartmental model, as the patches and the
mobility network that connects them induces a different dynamic,
we do observe similar trends with respect to the epidemic curve
and peak day. This experiment also enables us to calibrate the µ
parameter. We present a detailed description of this analysis and
report the results in Supplementary Information. In the second
experiment we show that our model is able to reproduce the trends
that were observed during the 2009 influenza pandemic, commonly
known as the swine-origin influenza pandemic (A(H1N1)v2009),
that originated in Mexico. The 2009 influenza pandemic in Great
Britain is an interesting case to validate our model for two reasons.
Firstly, the pandemic occurred quite recently and thus our model’s
census and mobility scheme are a good fit, as both the datasets
on which we base our census and mobility model were released
in 2011. Secondly, due to the time when the virus entered Great
Britain, the summer holiday started 11 weeks after the emergence
of the epidemic. The timing of the holidays had a severe impact
on the progress of the epidemic and resulted in a epidemic curve
with two peaks. This characteristic epidemic curve enables us to
demonstrate the predictive power of our age-structured contact
model with support for school closures. In Figure 2, we show a set
of model realisations in conjunction with the symptomatic case
data, which shows that we were able to closely match the epidemic
trends observed during the British pandemic in 2009 (details on
this case study in the Supplementary Information). Note that our
model reports the number of infections while the British Health
Protection Agency only recorded symptomatic cases. Therefore we
scale the epidemic curve with a factor of 1

4 . This large number of
asymptomatic cases produced by our model is in line with earlier
serological surveys [33] and with previous modelling studies [28].

4 LEARNING ENVIRONMENT
In order to apply reinforcement learning, we construct an MDP
based on the epidemiological model that we introduced in the
previous section. This epidemiological model consists out of patches
that correspond to administrative regions.

We have an agent for each patch that we attempt to control,
and for each agent we have an action space A = {open, close}
that allows us to open and close schools for one week. Each agent
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Figure 2: We show that our model (blue epidemic curves) is
able tomatch the trends observed in the British pandemic of
2009 (the vertical bars represent the number of infected in-
dividuals that was recorded during the epidemic). We show
10 stochastic trajectories.

has a predefined budget b of school closure actions it can execute.
Once this budget is depleted, executing a close action will default
to executing an open action. We refer to the remaining budget at
time t as b(t ).

For each patch, we consider a state space that combines the state
of the SEIR model and the remaining budget of school closures b(t )p .
For the SEIR model, we have 16 state variables (i.e., R16), as we have
an SEIRmodel (4 state variables) for each of the four age groups. The
remaining school closure budget is encoded as an integer, resulting
in a combined state space of 17 variables. We refer to the state space
of one patch p, that thus combines the epidemiological states and
the budget, as Sp . The state space of the MDP S corresponds to
the aggregation of the state space of each patch that we attempt to
control: ?

p∈Pc
Sp , (6)

where Pc is the set of patches that we control.
The transition probability function T (s′ | s, a) evolves the state

space to the next week in the epidemic, taking into account the
school closure actions that were chosen, using the epidemiological
dynamics as defined in the previous section.

To reduce the attack rate, we consider an immediate reward
function that quantifies the number of susceptible individuals lost
at time step t :

RAR(s, a, s′) = S(s) − S(s′), (7)
where S(.) is the function that determines the total number of
susceptible individuals given the state of the epidemiological model.

For PPO, we use both a policy and value network. The policy
network accepts the state of the epidemiological model as input
(details in Section 4) and the output of the network contains 1
unit, which is passed through a sigmoid activation function. This
output thus represents the probability of keeping the schools open
in the district. Every hidden layer in the PPO network uses the
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hyperbolic tangent activation function. The value network has the
same architecture as the policy network, with the exception that
the output is not passed through an activation function. We will
refer to this settings throughout this work as the single-district
PPO agent.

PPO’s hyper-parameters are tuned (hyper-parameter values in
Supplementary Information) on a single-district (i.e., the Greenwich
district) learning environment with R0 = 1.8. To this end, we per-
formed a hyper-parameter sweep using Latin hypercube sampling
(n = 1000) [40].

We conduct two kinds of experiments: in the context of a single
district and in the context of the Great Britain model that combines
all 379 districts. We consider two values for the reproductive num-
ber, i.e., R0 = {1.8, 2.4}, to investigate the effect of distinct repro-
ductive numbers. R0 = 1.8 represents an epidemic with moderate
transmission potential [12] and R0 = 2.4 represents an epidemic
with high transmission potential [31]. We investigate the effect
of different school closure budgets, i.e., b = {2, 4, 6} weeks. The
epidemic is simulated for a fixed number of weeks, chosen before-
hand, to ensure that the epidemic fades out after its peak. Following
Baguelin et al. [2], we use a latent period of one day (ζ = 1

1 ) and
an infectious period of 1.8 days (γ = 1

1.8 ).

5 COMPARE PPO TO THE GROUND TRUTH
We now establish a ground truth for different population composi-
tions, i.e., the proportion of the different age groups in a population.
We will use this ground truth to empirically validate that PPO
converges to the appropriate policy.

To establish this ground truth4, first consider that when we deal
with a single district, we can approach the ’average’ behaviour of
the model by removing the stochastic terms from the differential
equations. Hence, for a particular parameter configuration (i.e.,
district, R0, γ , ζ ), the model will always produce the same epidemic
curve. This means that the state space of this deterministic epidemic
model directly corresponds to the time of the epidemic. For an
epidemic that spans w weeks, we can formulate a school closure
policy as a binary number withw digits, where the digit at position i
signifies whether schools should be open (1) or closed (0) during the
i-th week. For short-lived epidemics, such as influenza epidemics,
we can enumerate these policies and evaluate them in ourmodel (i.e.,
using exhaustive policy search). Note that, in the epidemiological
models that we consider, the epidemic spans no more than 25 weeks,
and thus exhaustive search is possible.

In this analysis, we consider different values for the basic repro-
ductive number R0 and the population composition of the district,
both parameters that induce a significant change of the epidemic
model’s dynamics. To this end, we select 10 districts that are rep-
resentative of the population heterogeneity in Great Britain: one
district that is representative for the average of this census distribu-
tion and a set of nine districts that is representative for the diversity
in this census distribution. Details on this selection procedure can
be found in the Supplementary Information.

To evaluate PPO with respect to the ground truth, we repeat
the experiment for which we established a ground truth (i.e., R0 ∈

4Note that this is a proxy to the ground truth, as we use a deterministic version of the
model.
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Figure 3: PPO learning curves for the Barnsley district with
R0 = 2.4 for the three school closure budgets b = {2, 4, 6}.

{1.8, 2.4}, 10 districts and b ∈ {2, 4, 6}) and learn a policy using PPO,
in the stochastic epidemic model. For each experimental setting
(i.e., the combination of a district, an R0 value, and a school closure
budget b), we run PPO 5 times (5 trials), to asses the variance of
the learning curve. Each PPO trial is run for 5 · 105 time steps. We
show the learning curves for the district that is representative for
the average of the census distribution (i.e., the Barnsley district in
England), with R0 = 2.4 in Figure 3, for the other settings we report
similar learning curves in the Supplementary Information.

To compare each of the learned policies to its ground truth (one
for each district), we take the learned policy and apply it 1000 times
in the stochastic model, which results in a distribution over model
outcomes (i.e., attack rate improvement: the difference between
the attack rate produced by the model and the baseline when no
schools are closed). We then compare this distribution to the attack
rate improvement that was recorded for the ground truth. We show
these results, for the setting with a school closure budget of 6 weeks
and R0 = 2.4 , in Figure 4, and for the other settings in Supplemen-
tary Information. These results show that PPO learns a policy that
matches the ground truth for all districts and combinations of R0
and b .

Note that for these experiments, we use the same hyper-parameters
for PPO that were introduced in Section 4. This demonstrates that,
for different values of R0 and for different census compositions
(which induce a significant change in dynamics in the epidemic
model) these hyper-parameters work well. This indicates that these
hyper-parameters are adequate to be used for different variations
of the model.

In this section, we compare a proxy to the ground truth (that has
been found through an exhaustive policy search) to a policy learned
by PPO, a deep reinforcement learning algorithm. This allows us
to empirically validate that PPO converges to the optimal policy.
This experimental validation is important, as it demonstrates the
potential of deep reinforcement learning algorithms to learn policies
in the context of complex epidemiological models. This indicates
that it is possible to learn in even more complex stochastic models
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Figure 4: We compare the PPO results to the ground truth
for R0 = 2.4 and b = 6. Per district, we show a box plot that
denotes the outcome distribution that was obtained by sim-
ulating the policy learned by PPO 1000 times. On top of this
box plot, we show the ground truth, as a blue dot.

with large action spaces, for which it is impossible to compute
a proxy to the ground truth. In Section 7, we investigate such a
setting, where we aim to learn a joint policy for a set of agents,
using deep multi-agent reinforcement learning.

6 FINDING COMMUNITIES
To investigate the collaborative nature of school closure policies,
we apply deep multi-agent reinforcement learning algorithms. In
our model, we have 379 agents, one for each district, as agents
represent the district for which they can control school closure.
As the current state-of-the-art of deep multi-agent reinforcement
learning algorithms is limited to deal with about 10 agents [22], we
thus need to partition our model into smaller groups of agents, such
that deep multi-agent reinforcement learning algorithms become
feasible.

To this end, we consider the mobility matrix M and define a
directed commute graph forMi j ≥ 0 (Definition 6.1).

Definition 6.1 (Commute graph). For a commuting matrixM that
describes the mobility flux between a set of districts D, we define
a commute graph,

Gc = ⟨Vc ,Ac ⟩, (8)
whereVc is the set of vertices, with a vertex for each of the districts
in D, andAc is the adjacency matrix that specifies the vertices that
are connected:

(Ac )i j =

{
1, Mi j > 0
0, Mi j = 0

(9)

Each pair of connected vertices i and j has a weightMi j .

To detect communities in the commute graph, we used the Lei-
den algorithm [42], an algorithm that searches for communities
that maximize the network modularity [29]. We found a partition
of which we demonstrated the robustness (p-value ≤ 0.001) using

a bootstrapping approach presented by Radivojević and Grujić [37].
Furthermore, by rendering this partition on top of the map of Great
Britain, as is shown in Figure 5, we show that the districts belong-
ing to the same community are close to each other geographically,
as we would expect. Moreover, when we overlay the NUTS-2 ad-
ministrative regions5 on the partitioning (Figure 5), we observe
that our partitioning scheme mostly overlaps with the NUTS-2 re-
gions, which indicates that the Leiden algorithm produces a sensible
partitioning.

Figure 5: We show the communities, that resulted from ap-
plying the Leiden algorithm, on the map of Great Britain.
We show all administrative districts colour-coded by the
community they belong to and the add the borders of the
NUTS-2 administrative regions on top of this map. We an-
notate the Cornwall-Devon community with a yellow rec-
tangle.

We conduct our multi-agent reinforcement learning experiments
in the community with 11 districts, to which we will refer as the
Cornwall-Devon community (see Figure 5), as it is comprised of the
Cornwall and Devon NUTS-2 regions. In Section 8 we will discuss
possible ways to deal with larger communities.

7 MULTI-DISTRICT RL
We now examine whether there is an advantage to consider the
collaboration between districts when designing school closure poli-
cies. We conduct an experiment in our epidemiological model with
379 districts, and attempt to learn a joint policy to control the dis-
tricts in the Cornwall-Devon community. To this end, we assign an
agent to each of the 11 districts of the Cornwall-Devon community,
and use a reinforcement learning approach to learn a joint policy.
5NUTS (Nomenclature of Territorial Units for Statistics) is a geocode standard con-
structed by Eurostat to reference the subdivisions of European countries. NUTS-2
is the second level and corresponds to basic regions for the application of regional
policies.

6



We compare this joint policy to a non-collaborative policy (i.e.,
aggregated independent learners).

We remind the reader, that we refer to the state space of one
patch p as Sp , as detailed in Section 4. The state space of the MDP
S corresponds to the aggregation of the state space of each patch
that we attempt to control:

S =
?
p∈Pc

Sp , (10)

where Pc is the set of patches we attempt to control. In this exper-
iment, Pc corresponds to the 11 districts in the Cornwall-Devon
community.

In order to learn a joint policy, we need to consider an action
space that combines the actions for each district p ∈ Pc that we
attempt to control. This results in a joint action spacewith a size that
is exponential with respect to the number of agents. To approach
this problem, we use a PPO super-agent that controls multiple
districts simultaneously, to learn a joint policy. To this end, we use
a custom policy network that gets as input the combinedmodel state
of each district p ∈ Pc (Equation 10), and as a result, the input layer
has 17 · |Pc | input units. In contrast to the single-district PPO, that
was introduced in Section 4, the output layer of the policy network
of this agent has a unit for each district that we attempt to control.
Again, each output unit is passed through a sigmoid activation
function, and hence corresponds to the probability of closing the
schools in the associated district. Similar to the single-district PPO,
each hidden layer uses the hyperbolic tangent activation function.
The value network has the same architecture for the input layers
and hidden layers, but only has a single output unit that represents
the value for the given state. We will refer to this agent as multi-
district PPO.

We conduct experiments forR0 = 1.8 (i.e., moderate transmission
potential) and R0 = 2.4 (i.e., high transmission potential), and we
consider a school closure budget of 6 weeks, i.e., b = 6. We run
multi-district PPO 5 times, to assess the variance of the learning
signal, for 5 · 106 time steps, and we show the learning curves in
Figure 6. These learning curves demonstrate a stable and steady
learning process, for R0 = 1.8 the reward curve is still increasing,
while for R0 = 2.4 the reward curve indicates that the learning
process has converged.

To investigate whether these joint policies provide a collaborative
advantage, we compare it to the aggregation of single district poli-
cies, to which we will refer as the aggregated policy. To construct
this aggregated policy, we learn a distinct school closure policy for
each of the 11 districts in the Cornwall-Devon community, using
PPO, following the same procedure as in Section 5. To evaluate this
aggregated policy, we execute the distinct policies simultaneously.
For the districts that are not controlled (both for the joint and aggre-
gated policy) we keep the schools open for all time steps. For both
R0 = 1.8 and R0 = 2.4, respectively, we simulate the joint and the
aggregated policy 1000 times, and we show the attack rate improve-
ment distribution in Figure 7. These results corroborate that there
is a collaborative advantage when devising school closures policies,
for both R0 = 1.8 and R0 = 2.4. However, the improvement is most
significant for R0 = 1.8. We conjecture that this difference is due to
the fact that there is less flexibility when the transmission potential
of the epidemic is higher, since there is less time to act. Although,
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Figure 6: We show the reward curves for multi-district PPO
for R0 = 1.8 (top panel) and R0 = 2.4 (bottom panel). The
reward curves are visualized using a rolling window of 100
steps. The shaded area shows the standard deviation of the
reward signal, over 5 multi-district PPO runs.

we observe an improvement when a joint policy is learned, it re-
mains challenging to interpret deep multi-agent policies, and we
discuss in Section 8 possible directions for future work with respect
to explainable multi-agent reinforcement learning.

In this analysis, where we have a limited number of actions per
agent, the use of multi-district PPO proved to be successful. How-
ever, the use of more advanced multi-agent reinforcement learning
methods is warranted when a more complex action space is consid-
ered. For this reason, we also investigated the recently introduced
QMIX [38] algorithm. We searched for hyper-parameters to opti-
mize QMIX’s performance, but the resulting learning curve proved
to be quite unstable (shown in Supplementary Information). Next
to QMIX, there are other algorithms (e.g., Counterfactual multi-
agent policy gradients [13], Actor-Attention-Critic for Multi-Agent
Reinforcement Learning [23] and deep coordination graphs [3])
of interest to epidemiological decision making. In particular, we
discuss the attention-based multi-agent reinforcement learning
algorithms (e.g., Actor-Attention-Critic for Multi-Agent Reinforce-
ment Learning [23]) as a direction for future work in Section 8.
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Figure 7: We compare the simulation results of the aggre-
gated policy (blue) and the joint policy (orange) for R0 = 1.8
(top panel) and R0 = 2.4 (bottom panel). For both distribu-
tions (i.e., aggregated versus joint) , we show a box plot that
denotes the outcome distribution that was obtained by sim-
ulating the respective policy 1000 times.

We conducted our experiments in the setting of school closures,
and our findings are of direct relevance with respect to the mit-
igation of pandemic influenza. Furthermore, our novel approach
to investigate the collaborative nature of prevention strategies as
a multi-agent reinforcement learning problem, can be applied to
other epidemiological settings, as we discuss in Section 8.

8 DISCUSSION
We demonstrate the potential of deep reinforcement learning in the
context of epidemiological decision making by conducting experi-
ments that show that PPO converges to the optimal policy. Next, we
investigate and show that there is a collaborative advantage when
devising school closures policies, by formulating this hypothesis as
a multi-agent problem.

The work conducted in this manuscript indicates that there is
the potential to use reinforcement learning in the context of com-
plex stochastic epidemiological models. For future work, it would
be interesting to investigate how well these algorithms scale to
even larger state and/or action spaces. To increase the scalability, a

possible research direction is the use of graph convolutional neural
networks instead of multi-layer perceptron networks [9].

Another important concern is to scale these reinforcement learn-
ing methods to epidemiological models with a greater computa-
tional burden. In this work, we construct a custom model where we
attempt to balance between model complexity and computational
efficiency. However, constructing such models is cumbersome and
time-consuming, and the resulting model is specifically tailored to
address one particular research question (in our case the evaluation
of school closure policies). An alternative to such custom models is
the use of individual-based models, as such models can be easily
configured to approach a variety of research scenarios. However,
the computational burden that is associated with individual-based
models complicates the use of reinforcement learning methods. To
this end, it would be interesting to devise methods to automatically
learn a surrogate model from the individual-based model, such that
the reinforcement learning agent can learn in this computationally
leaner surrogate model [46].

While we show that deep reinforcement learning algorithms can
be used to learn optimal mitigation strategies, the interpretation of
such policies remains challenging [18]. This is especially the case for
the multi-district setting we considered, where state and time do not
match, and the infection onset of the patches is highly stochastic. To
this end, further research into explainable reinforcement learning,
both in a single-agent and multi-agent setting, is warranted. An
interesting direction for further research is the use of Soft Decision
Trees (i.e., a hybrid model that combines decision trees and simple
neural networks) as a surrogate for the deep RL policy that was
learned, as presented by Coppens et al. [7].

Furthermore, in order to address problemswith a larger state/action
space and to scale to a larger number of agents, the use of attention-
based multi-agent reinforcement learning algorithms could be ex-
plored [23, 43]. Based on this mechanism, algorithms can be applied
on a graph of agents, which is either assumed [24] or learned [30].
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