Infinite population evolutionary dynamics match infinite
memory reinforcement learning dynamics

Wolfram Barfuss
School of Mathematics, University of Leeds, UK
Max Planck Institute for Mathematics in the Sciences, Leipzig, GER
barfuss@mis.mpg.de

ABSTRACT

Reinforcement learning algorithms have been shown to converge
to the classic replicator dynamics of evolutionary game theory,
which describe the evolutionary process in the limit of an infi-
nite population. However, it is not clear how to interpret these
dynamics from the perspective of a learning agent. In this paper,
we propose a data-inefficient batch-learning algorithm for tempo-
ral difference Q learning and show that it converges to a recently
proposed deterministic limit of temporal difference reinforcement
learning. In a second step, we state a data-efficient learning algo-
rithm, that uses a form of experience replay, and show that it retains
core features of the batch learning algorithm. Thus, we propose an
agent-interpretation for the learning dynamics: What is the infinite
population limit of evolutionary dynamics is the infinite memory
limit of learning dynamics.

KEYWORDS

Multi-agent reinforcement learning; Evolutionary game theory;
Batch learning; Experience replay; Stochastic games

1 INTRODUCTION

Collectives of autonomous learning agents are a widely accepted
method for solving problems of distributed nature. Consequently,
the field of multi-agent learning has developed various algorithms
[8], yet, multiple challenges remain: nonstationarities due to other
learning agents, the curse of dimensionality of the joint-state-action
space, the increased number of hyperparameters, that need tuning,
coordination needs between agents and the possibility of social
dilemmas [31].

A dynamical systems approach, based on the link between evolu-
tionary game theory and reinforcement learning, can help to over-
come these challenges by providing improved, qualitative insights
into the emerging collective learning dynamics [6]. The relation-
ship between the two fields is as follows: one population with a
frequency over phenotypes in the evolutionary setting corresponds
to one agent with a frequency over actions in the learning setting
[29]. For example, when studying the emergence of cooperation,
one population composed of cooperators and defectors corresponds
to one agent with a mixed strategy over a cooperative and a defec-
tive action. In their seminal work, Bérgers and Sarin showed how
one of the most basic reinforcement learning update schemes, Cross
learning [10], converges to the deterministic replicator dynamics
of evolutionary games theory [7]. Likewise, the convergence to the
replicator dynamics has been shown for single-state Q learning
[27, 30].

This deterministic - sometimes also called evolutionary - limit
can be taken in multiple ways. In continuous time, the learning rate
is sent to zero [27, 30]. In discrete-time, the batch size of a batch
learning algorithm is sent to infinity [5, 12-14]. In essence, both
ways assume that policy updates occur on much slower time scales
than actual interactions with other agents and the environment.

However, it is still unclear how algorithmic implementations and
analytical equations relate to each other, or in other words, how to
interpret this deterministic limit in the context of reinforcement
learning agents. Improved understanding of such learning equa-
tions is important to advance their practical use for overcoming
critical challenges of multi-agent reinforcement learning.

The classic replicator equations have a clear interpretation. They
model the dynamics of an infinite population evolving under the
pressures of selection [18]. In this paper, we propose to interpret
the deterministic, evolutionary, limit of reinforcement learning as
learning in the infinite memory limit.

We focus on the discrete-time limit of temporal difference rein-
forcement learning dynamics with discounted rewards [3]. After
introducing necessary background (Sec. 2) we first propose a novel
temporal difference batch-learning algorithm for Q learning (Sec. 3).
We show that this batch learning algorithm matches the determin-
istic learning equations for large batch sizes (Sec. 4). Yet, it requires
many interactions with the environment and is therefore highly
data-inefficient.

Second, we transform the data-inefficient batch learning algo-
rithm into a data-efficient learning algorithm, that uses a form of
experience replay. We shift the batch of actual interactions with the
environment into the memory of the agent (Sec. 5). Thus, we can
conclude (Sec. 6), what is the infinite population limit of evolution-
ary dynamics is the infinite joint-action memory limit of learning
dynamics.

Related work. Previous research on the dynamics of learning
found that discrepancies can arise between the predictions of contin-
uous-time learning equations with the actual Q learning algorithm
at a small learning rate. This policy-bias problem [1] occurs because,
at any time step, an agent can execute and get feedback for only one
action. If reward information were available for all actions and states
at every time step, these discrepancies would disappear. To address
this policy-bias problem, Frequency-Adjusted Q Learning (FAQL)
[20] was proposed as a simple and effective modification to the Q
learning update. The update value of an action is normalized by
the probability of choosing that action. Practical concerns of FAQL
were improved by performing updates repeatedly, proportional to
the inverse of the frequency of choosing that action [1]. Thus, both
variants [1, 20] extend the basic Q learning algorithm to improve the

link between the replicator dynamics and Q learning. They suggest
that replicator dynamics learning matches a frequency-adjusted Q
learning algorithm.

Alternatively, a deterministic limit of reinforcement learning can
be taken in discrete time, resulting in a set of difference equations
for the action probabilities [5, 12—-14]. This approach begins with a
simple batch reinforcement learning algorithm. Experience is col-
lected inside the batch under keeping the current policy fixed. Then,
the policy is updated, using the average batch reward. Determin-
istic dynamics emerge by sending the size of the batch to infinity.
Note that a batch learning approach automatically addresses the
policy-bias problem by repeated interactions with the same policy.

The majority of papers on learning dynamics consider only
single-state repeated games. The first article which considers multi-
state environments introduced the piecewise replicator dynamics
[33]. They combine replicator dynamics with switching dynamics
between cell partitions of the state space of the dynamical system.
State-coupled replicator dynamics [16] improve on this idea by
the direct coupling between states, yet, lack an exploration com-
ponent. This limitation is overcome by the reverse engineering
state-coupled replicator dynamics [15] which incorporate insights
about Q learning with Boltzmann exploration. Yet, all of these dy-
namics consider an average reward setting, whereas in Q learning
a discounted reward is commonly used.

Only recently, an analytical method to derive the deterministic,
discrete-time limit of temporal difference reinforcement learning
with discounted rewards was proposed [3]. We use them as a start-
ing point for this work. They extend on the idea of batch learning
with an infinite batch size, yet, an explicit comparison between
the predictions of these learning dynamics with actual algorithmic
implementations were still pending.

2 BACKGROUND

2.1 Stochastic games

Stochastic games are a formal model for multi-agent environment
systems. They generalize both repeated normal form games and
Markov decision processes (MDPs). MDPs are generalized by intro-
ducing multiple agents. Repeated games are generalized by introduc-
ing an environment with multiple states and transition probabilities
between those states. All agents choose their actions simultane-
ously. The transition probabilities depend on the joint action and
the current environmental state. So do the rewards, the agents
receive. Formally, the game G = (N, S, A, T, R, X) is a stochastic
game with N € N agents. The environment consists of Z € N states
S =(S1,...,52). In each state s, each agent i has M € N available
actions Al = (Al,. .. ,Aiw) to choose from. A = []; Al is the
joint-action set and agents choose their actions simultaneously.

The transition function T : S X A x S — [0,1] determines
the probabilistic state change. T(s, a, s”) is the transition probabil-
ity from current state s to next state s’ under joint action a =
(@',...,aN) e A.

The reward function R : S x A x S — RN maps the triple of
current state s, joint action g = (al, A aN) and next state s’ to
an immediate reward value for each agent. R(s, g, s”) is the reward
agent i receives.

Agents choose their actions probabilistically according to their
policy X : 8 x A* — [0,1]. Xi(s, a) is the probability that agent
i chooses action a given the environment is in state s. X(s,a) =
[1; X¥(s, @*) is the joint policy.

We chose an identical number of actions for all states and all

agents out of notational convenience. With a*
i+1
at™, .

=(d,..., a1
.., aN) we denote the joint action except agent i’s. Through-
out this paper we restrict ourselves to ergodic environments with-
out absorbing states (c.f. Ref. [15])

2.2 Temporal difference Q learning

Temporal difference Q learning is one of the most widely used
reinforcement learning algorithms [28]. In essence, at time step ¢
agent i estimates how valuable action a is when the environment
is in state s by its state-action values Qi(s, a). Subsequently, agent i
chooses one action from its action set with a probability derived
from these state-action values and continues with time steps t + 1.
State-action values get iteratively updated according to:

Q;+1(s, a) = Q;(s, a)+a- TD;(S, a), (1)
with the temporal-difference error
YDi(s, a):=(1- y)rti +y mbax Q;(s’, b) — Q;(s, a). (2)

This update can be derived from the assumption that agent i
aims to maximizes its expected discounted future reward G, =

1-y) 2k ykr;+k, where the discount factor parameter y € [0, 1)
regulates how much the agent cares for future rewards. The pre-
factor (1 — y) normalizes the state-action values to be in the same
scale as the rewards [3]. The learning rate parameter « regulates
how much new information is used for a state-action-value update.
We assume identical parameters across agents throughout this pa-
per and therefore do not equip parameters with agent indices. The
variable rf refers to the immediate reward at time step ¢, s’ denotes
the next state after executing action a at state s.

Based on these state-action values, agents choose their actions
according to the Boltzmann policy

PQils.a)

_ 3
3, ePQI(s.b) ®

X ; (s,a) =
where the intensity of choice parameter f controls the exploration-
exploitation trade-off. In the baseline scenario, an agent can only
execute one action at a time and thus, will only receive reward
feedback for the action that was chosen.

Combining Egs. 1, 2, and 3, one can derive the update equation
for the joint policy,

X;' s, a)ea/)’TD:(s,a)

S Xi(s, b)eaPTOH5:)”

X!, (s,a) = (4)

2.3 Testbeds

2.3.1 Temporal risk-reward dilemma. The first environment we
use as a testbed is a one-agent stochastic game, i.e., a Markov
decision process. It is a simple, two-state, two-action environment
and models the intertemporal dilemma between a risky choice
with possibly high immediate reward and a safe choice with a
guaranteed, but low immediate reward [4]. The action set reads

A = {safe,risky}, the environment can either be in a prosperous
or a degraded state, S = {prosp.,deg.}. The transition function

reads
T(prosp., a,deg.) = { 82 @ =safe

a=risky ’
0.1 a=safe
T(deg.,a,prosp.) = { 0 0= risj;cy ,

and T(prosp., a, prosp.) = 1-T(prosp., a,deg.) and T(deg., a, deg.) =
1—T(deg., a, prosp.). The reward function is given by

1 a=riskyands’ = prosp.
R(prosp.,a,s’) =4 0.5 a=safe
0 elsewhere

By applying the safe action in the prosperous state, the agent is
guaranteed to remain in the prosperous state and obtains a reward
of 0.5. If it applies the risky action and remains in the prosperous
state, it obtains a reward of 1. If, however, the environment col-
lapses under the risky action, the agent obtains 0 reward until the
environment is recovered again. Recovery is possible only under
the safe action after waiting for some iterations in the degraded
state. In the prosperous state, it depends on the agent’s discount
factor whether the risky or the safe action is more valuable to the
agent.

2.3.2 Two-state matching pennies. The other environment we
use as a testbed in this article is the two-agent (N = 2), two-state
(S = {1,2}), two-action (A = {1, 2}) matching pennies game [15],
which presents a challenge of coordination. Its reward function is
given by the two payoff bi-matrices, independent of the next state

s/,

1 N 2 mn [L0 0,1
(R (1’273)3R (l’g’s))_(071 170)’

1 ’ 2 N 0,1 1,0
(R (Z,Q,S),R(Z,Q,S))—(Lo 01

Its transition function reads

T(Lg,2>:((1) (1)) T(z,g,1)=(‘1) ‘1))

andT(1,a,1) = 1-T(1,4,2) and T(2, a, 2) = 1-T(2, a, 1). This game
models the situation of penalty kicks between a kicker and a keeper.
Players change roles under state transitions, which depend only on
agent 1’s actions. With symmetrical rewards but unsymmetrical
state transitions, this game presents the challenge of coordinating
both agents on playing a mixed strategy with equiprobable actions.

3 SAMPLE-BATCH LEARNING

Research activity on batch reinforcement learning has grown sub-
stantially in recent years, primarily due to the central merits of the
batch approach: i) its efficient use of collected data and ii) the stabil-
ity of the learning process when used with function approximation
[21]. In this work, we exclusively use the tabular case (without
function approximation) and thus, we focus on the issue of data
efficiency [34].

As a first step, we propose a highly data-inefficient sample-batch-
learning algorithm (SBATCH, Algorithm 1). Our focus lies on the
structure of the Q-update. In the next section, we show that this
specific structure of SBATCH approaches the deterministic limit of

Algorithm 1: Tabular Sample-Batch Q Learning

1 begin
2 Initialize 2¢’Q(s, a) and YQ(s, a) arbitrarily.
3 Initialize count(s, a), reward(s, a) and nextQ(s, a) to
zero.
4 Observe current state s
5 repeat
6 Compute policy X(s, a) using #°*Q(s, a) according to
Eq.3
7 for k « 1 to batch size K do
8 Choose action a according to X(s, a)
9 Execute a and observe reward r and next state s’
/* Interaction phase */
10 Set count(s, a) « count(s,a) + 1
11 Set reward(s, a) < reward(s,a) +r
12 Set
nextQ(s, a) < nextQ(s, a) + maxy, Z’“ZQ(s’, b)
13 Set 22lQ(s, a) — ?20(s,a) + a -
(1= y)r +y 2p X(s", b)*4Q(s", b) - “Q(s, a)
14 Sets « s’
/* Adaptation phase */
15 foreach s, d do
16 Set ¢($, @) < count($, @) where count(s, d) # 0
17 Set ¢($, @) < 1 where count(s,d) = 0
18 Set TD(S, @) «—
(1= L 20 i
19 Set 2€1Q(s, 4) « 9°1Q(3, d) + a - TD(S, @)
20 Set 2203, 4) — 2°10(3, 4)
21 Set count (s, @), reward($, @) and nextQ(s, d) to
zZero.
22 until done;

temporal difference reinforcement learning [3] under large batch
sizes. This section theoretically compares the novel SBATCH al-
gorithm and the known derivation of the deterministic learning
equations.

The learning process of SBATCH is divided into two phases, an
interaction phase (Algorithm 1 11. 7 - 14) and an adaptation phase
(Algorithm 1 11. 15 - 20). During the interaction phase, the agent
keeps its policy fixed while interacting with its environment for K
time steps. It collects state, action and reward information. During
the adaptation phase, the agent uses the collected information for an
update of its policy. Key is the use of two state-action value tables,
one for acting (#°Q), the other for improved value estimation (valp).
While 90 is kept constant during the interaction phase, ??/Q is
iteratively updated.

Mathematically, we can express this sample-batch learning by
formulating the temporal difference error of batch size K:

K-1
) 1 i
K 1
TD;(S, a) = _C(s, a) kE_O 535!+k5aaz+k . TDt’k(S, a) (5)

where the number of times the state-action pair (s, a) was visited
is denoted by C(s, a) := max(1, Zfz_ol Ossyipaasyy) (1. 16 and 17).
The Kronecker deltas dss,, , daa,,, yield zero, except if state s is the
state visited in time step ¢ + k and the action a is the action chosen
in time step ¢ + k. Then they yield 1. The notation 7D§(s, a) denotes
a temporal difference error of batch size 1: IDf(s, a) = 1TDi(s, a)
and matches indeed Eq. 2, as one can easily show.

™D (s, @) = (1=p)ri g +y max P04 (57, b)=“'Q} (51, ar) (6)

is the auxiliary temporal difference error with s’ = s;, ., being
the next state inside the batch and the auxiliary state-action value
update (1. 13)

valg! (60 = 20 (s, +
a (1 - Y)r;_'_k + YV,i,k(SN) - UalQ;.’k@’ a) 5

where Vti,k(s”) = Xti(s", b)v“lQ;’k(s”, D) is the state-value es-
timate of state si, at time step k.

Algorithmically, the information is collected during the inter-
action phase as follows: the agent counts the number of visited
state-action pairs (I. 10), it sums up immediate rewards for each
state-action pair (. 11), as well as the value estimation for the next
state (1. 12). This is the specific Q-update.

Finally, during the adaptation phase, the agent uses the sample
averages of the immediate rewards and next-state-value estimates
to summarize the collected information in order to update the state-
action values 4¢/Q, used for acting (1. 19):

Vs, a “CtQ;JrK(s, a) = 9°1Ql(s,a) + a - KTD;(S, a). (8)

™)

Since the agent interacts physically with the environment during
the interaction phase, SBATCH requires many interaction time
steps and is therefore highly data-inefficient. However, crucial is
the structure of the Q-update. The state-action value table of the
basic Q-update (Eq. 1) is separated between two state-action value
tables, one for acting (“°’Q), the other for improved value estimation

(valQ).
4 DETERMINISTIC LIMIT

In this section, we present how the prescribed sample-batch learn-
ing algorithm approaches the recently proposed deterministic limit
of temporal difference reinforcement learning dynamics (DetRL) [3]
under an increasing batch size K. Equivalently, this can be regarded
as a separation of time scales between the processes of interac-
tion and adaptation. We assume that (infinitely) many interactions
happen before one step of policy adaptation occurs.

We begin by briefly reviewing how this deterministic limit is
constructed analytically by sending K — oo [3]. Under this assump-
tion and because of the assumed ergodicity, one can replace the
sample average in Eq. 5, i.e., the sum over sequences of states and
actions with the policy average according to

K-1

1 _: s

S bt~ ST e, o
> k=0 s’ ai

We replace the sample average with a policy average, where we aver-
age over the policies of the other agents and the environmental state

transitions. This is a general method, applicable to various kinds
of temporal difference reinforcement learning algorithms (e.g., Q,
SARSA, Actor-Critic learning [3]). Throughout this article, we solely
focus on multi-state Q learning. The notation Yo ¥, X~i(s,a™")
T(s,a,s”) is an abbreviation for Yo >l 1 -+ X 4i-1 EaiH EED I
X(s,al) - X1 U(s,al ") X+ (s, 0t 1) - - XN (5, aN)T(s, g, s"). The
time ¢t is rescaled accordingly.

We apply this conversion rule (Eq. 9) to the three terms of the
temporal difference error (Eq. 6): the immediate reward, the value
estimate of the next state and the current state-action value.

The first term, the immediate reward r]i = Ri(sp.a &> Sk+1) in the
temporal difference error becomes

R (5.0 = D" > X (s,a™T(s,0,5)R 5,0,).

s’ gt

The second term, maxy, U“’Q; (Sk+1, D), i.e., the value estimate of
the next state becomes
maxpny\ i -1 —i ’ i
s,a) = X "s,a HT(s,a,s)max s',b).
("Q)x(5.0) =)) X7 .46 a8) max Q3 (5", 1)
s at

Since we assume an infinite number of interactions, we can replace
the state-action value estimates Q;, which evolve in time ¢ (Eq.
7), with the converged true state-action values Q3 , which depend
on the joint policy X. We compute QIK(S’ a)=(1- y)(R)’K(s, a) +
yVx(s) via the matrix inversion according to Vi = (1 - y)[1z —
yTK]’l(I_Q) & with the effective Markov chain transition matrix
TX(S, s”) :== X4 X(s,a) T(s,a,s") and the policy average reward
(ﬁ))i((s) = Yy 2aX(s,0) T(s, a,5")Ri(s, a, s"). This matrix inver-
sion, and therefore the whole dynamics, are only applicable to
environments with relatively small state-action spaces [3]. Note
that ("™*Q)} (s, a) is the policy averaged maximum state-action
value of the next state, viewed from the current state-action pair
(s, a).

The third term, the current state-action value “”Q; (s¢,ar) be-
comes ™' log X!(s, a). This can be shown by inverting Eq. 3 and
realizing that the dynamics induced by Eq. 4 are invariant under
additive transformations which are constant in actions [3].

All together, the temporal difference error for Q learning in the
deterministic limit reads

STDi (5, @) = (1 -)RV (5, @) + (" QY (5, @) - %mgxi(s, a).

(10)

To obtain the DetRL dynamics, the temporal difference error of

the current policy in the infinite batch limit “TD’ (s, a) has to be
Ea

inserted into Eq. 4.

4.1 Results and discussion

We compare the DetRL dynamics (Sec. 4) with the SBATCH algo-
rithm (Sec. 3). The influence of the three parameters a, §, and y on
the deterministic learning dynamics can be summarized as follows:
the intensity of choice f and the discount factor y control where the
learners adapt toward in policy space, weighting current reward,
expected future reward and the level of forgetting. The learning rate
a controls how fast the learners adapt along these directions [3]. To

Policy space K=50 Trajectory
1.0 T T T e > g o
:0_7 F A A 2 2ErY v. ey
4 0.8 1
ﬁ 08 x X T ox 1/1 » y 'f"‘—‘w
© 0.6 FOEAE A7 £ BRI = 0.6
o uw
& »ox EANE AR =
o 0.4 X< 0.4+
%_ . E2NE A T —— X(s=deg., a=safe)
@ 0.2 EEE S 0.2 X(s=prosp., a=safe)
B3
i 4
001, . . 0.0 ; ; ; ; ;
0.0 0.5 1.0 1000 2000 3000 4000 5000
X(s=deg., a=safe) Interaction time steps
Policy space K=500 Trajectory
1.04 T T r > > s
Q
E 0.8 FA A A 4 »
1l
© 0.6 =
o 0.4+ x
ﬁ" —— X(s=deg., a=safe)
w 024 0.2 X(s=prosp., a=safe)
B3
0.0, T T 0.0 T T T T ,
0.0 0.5 1.0 10000 20000 30000 40000 50000
X(s=deg., a=safe) Interaction time steps
Policy space K=5000 Trajectory
1.0 7 > > > > » I
o
E 08] P A A 4 0.8
1 x A oA ox 1/ i >
© 0.6 ” > < 0.6
a u
o4y 7 “ M Road
? . 4 > —— X(s=deg., a=safe)
« 0.2 A A A A 4w 0.2 4 X(s=prosp., a=safe)
R EEEERE 0.0
0.0 0.5 1.0 100000 200000 300000 400000 500000

X(s=deg., a=safe) Interaction time steps

Figure 1: Comparison between DetRL dynamics (dark red
dashed line) with 10 runs of SBATCH learning (light blue
straight lines) in the temporal risk-reward dilemma for
varying batch sizes K; a = 0.05, f = 150, y = 0.9. Note that the
blue lines converge to the red lines as K in increased from
50 to 5000.

emphasize the analogy between DetRL and SBATCH we keep these
three parameters constant and study the influence of the batch size
K.

In the single-agent temporal risk-reward dilemma, it is always
best to choose the safe action in the degraded state. For an agent
with a discount factor of y = 0.9, it is also optimal to choose the

safe action in the prosperous state. The challenge presented in Fig.

1 is to learn to choose the safe actions in both states, starting from
an initial policy, where in both states, the safe action is chosen
only with 20%. The arrows in the policy space indicate the average
direction the temporal difference errors (Eq. 10) drive the learner
toward. All point to the optimal policy in the upper right.

DetRL dynamics (dark red dashed line) follow these temporal
difference arrows and learn to play safe. SBATCH learners with
batch size K = 50, however, do not. The agent does not manage to
learn to choose the safe action in the prosperous state. For a batch
size of K = 500, the agent learns to do so, yet, the trajectory through
the policy space differs from the one of DetRL. The agent learns
to play safe in the degraded state faster than in the prosperous
state. For a batch size of K = 5000, SBATCH learning and DetRL
dynamics match relatively well.

State s=1 K=50 State s=2

|y ¥ & T

T T T T
0.00 0.25 0.50 0.75 1.00
XYs=1, a=0)

5 so8q¥ ¥
1 I v
o T 0.6
S - o
1 I 0.44% %
wn wn
it N S
x X< 0.2 -
0.0 -
T T T T T
0.00 0.25 0.50 0.75 1.00
XYs=1, a=0)
State s=1 K=5000 State s=2
L0 > 3 2 % . o 5 =~ <«
so08] T Ty gog{y ¥y x 2T T
I T A vy o L N
© 0617 # {’, « vy “’»0,6-\ v - % %
o —
1 oad” * v ¥ I 0.4 % 4 g L
< " " YV < & x p & R “ &N
XO-Z'kR\‘,.‘,(< 0.2 .« > > > 7 24
0.0" T = |‘\ «I — T 0.0 T — |» /vl il T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

XYs=0, a=0) XYs=1, a=0)

Figure 2: Comparison between DetRL dynamics (dark red
dashed line) with 10 runs of SBATCH learning (light blue
straight lines) in two-state matching pennies game for vary-
ing batch sizes K; a = 0.05, f = 25,y = 0.75. Note that the blue
lines converge to the red lines as K in increased from 50 to
5000.

In the two-state matching pennies game, the two agents have
to coordinate on a mixed policy profile. Due to the finite intensity
of choice, DetRL dynamics manage to coordinate on the mixed
Nash equilibrium in the centre of the policy space from a spiralling
learning trajectory (Fig. 2). Here, a larger batch size makes the match
between DetRL dynamics and SBATCH learning increasingly close.

In both environments, we gave the agents 100 opportunities to
change their policy. Thus, the actual interactions with the environ-
ment (100 - K) scale with the batch size K. The actual computing
time in seconds scales also linearly with the batch size K (Tab. 1).

5 CORRELATED EXPERIENCE REPLAY

Our sample batch algorithm is highly inefficient concerning the in-
teraction steps it requires with the environment. Experience replay
[22] intends to speed up convergence not only by using observed
state transitions (the experience) once but by replaying them re-
peatedly to the agent as if they were new observations. Doing so
is useful because in the basic Q-Update (Eqgs. 1 and 2), information
is not able to back-propagate from updated states to preceding
states without further interaction. Replaying experience enables
this back-propagation of information, and, ideally, speeds up the
learning process [21]. However, some important transitions may

Algorithm 2: Correlated Experience Replay Q Learning

1 begin

2 Initialize 2¢’Q(s, a) and ?#0(s, a) arbitrarily.

3 Initialize count(s, a), reward(s, a) and nextQ(s, a) to
Zero.

4 Initialize replay buffer B of size K’ with initial policy.
5 Observe current state s

6 repeat

7 Compute policy X(s, a) using 4°’Q(s, a) according to
Eq.3

8 Choose action a according to X(s, a)

9 Execute a and observe reward r and next state s’

10 Store experience (s, a,r,s”) in 8 and remove the
oldest experience

1 Sample batch of size K of subsequent experiences

((s,a,r,s'),(s",a’,r",s"),...) from B, where actions
are choosen according to X.

12 Use batch to update count(s, a), reward(s, a),
nextQ(s, a) and 7J“IQ(s, a) according to Algorithm
1,1L 7 - 14.

13 Update 4!Q according to Algorithm 1, 11. 20 - 15.

14 Sets « s’

15 until done;

come delayed to make efficient use of experience replay. This neg-
ative effect is partially controlled by the size of the replay buffer
[34].

With Algorithm 2 we shift the batch update from actual ex-
perience into memorized experience. To retain similar learning
behaviour in policy space as with the SBATCH algorithm, corre-
lated experience replay is crucial. Therefore we term it CorrER.
The imaginary batch is constructed as follows (l. 11): Starting from
a random initial state s, the agent draws an action a according
to its current policy. A randomly selected experience (s, a,r,s”) is
drawn from the agent’s memory buffer, which matches the current
state-action pair s, a. The agent continues with the next state s’
accordingly for K steps. These K experiences are used to perform
the batch update (1. 12) which is then used to update the policy (1.
13). These processes happen all between two-time steps of inter-
action with the environment. CorrER may be computationally not
advantageous. Yet, it is constructed to be data-efficient (concerning
the number of environmental interactions required for successful
learning) through the imaginary batch.

5.1 Results and discussion

In this section, we compare the correlated experience replay learn-
ing (CorrER) with SBATCH learning (Sec. 3). Additionally, we com-
pare both algorithms with an equal probability experience replay
learning (ER), where samples are drawn from the memory buffer
with equal probabilities. Apart from 1. 11 it is identical to Algorithm
2.

For the temporal risk-reward dilemma, Fig. 3 shows that corre-
lated experience replay (CorrER) learning matches the SBATCH
baseline noticeably closer than the equal probability experience

Trajectory

Policy space SBATCH
1.04 7 > > > > » I

AT A A 4

safe)

0.8 0.8 1
Il
© 0.6 = 0.6
g g
3 0.4+ X 0.4+
ﬁ:. —— X(s=deg., a=safe)
@ 0.21 0.2 X(s=prosp., a=safe)
<
0.0, T T 0.0 T T T T ,
0.0 0.5 1.0 100000 200000 300000 400000 500000

X(s=deg., a=safe) Interaction time steps

Policy space Trajectory
1.0 4 = > > > » » » 0

3 E A AN AN NP4 >
o© 0.8 y

0 AT A 4 v« >

s /

2 0.6 EAE AR £ 71 13

g 0.4 > x /1 k2 4 »

\‘z;l - TA A A w —— X(s=deg., a=low)
;? 0.2 4 A A A A 4 n 0.2 4 X(s=prosp., a=low)

A A4 4 4
0.0 1, T T 0.0 4 T T T T T
0.0 0.5 1.0 5000 5020 5040 5060 5080 5100

X(s=deg., a=low) Interaction time steps

Policy space CorrER
7 ¥ > > » » [

Trajectory

1.0
o EAE A AP 4 =
% 0.8 77 0.8
i EAP. AT A 4 1/1 >
© 0.6 XX V" “ > = 0.6
o)
g 0.4 EA 4 /1 w 4 » ; 0.4 1
<”1 yx A A 4 » —— X(s=deg., a=safe)
@ 0.2 A A A A A 0.2 1 X(s=prosp., a=safe)
X
0.0~ i T rrt k. 0.0+ T T T T .
0.0 0.5 1.0 5000 5020 5040 5060 5080 5100

X(s=deg., a=safe) Interaction time steps

Figure 3: Comparison between SBATCH, ER, and CorrER
learning (light blue straight lines) in the temporal risk-
reward dilemma for K = K’ = 5000, « = 0.05, 8 = 150,y = 0.9
and 10 sample runs. DetRL dynamics (dark red dashed line)
are shown for reference. Note that trajectories of CorrER are
closer to the ones of SBATCH and DetRL, compared to the
ones of ER, with distinctly fewer interaction time steps than
SBATCH.

replay (ER) learning. As in Section 4 we gave each learner the pos-
sibility to adapt its policy for 100 learning steps. As a consequence,
both experience replay variants take only 5100 time steps of phys-
ical interactions with the environment, from which 5000 are the
initialization of the memory buffer. In contrast, the SBATCH learner
requires 500.000 time steps of interaction with the environment.
This is a factor of approximately 100, equaling the number of learn-
ing steps. Interestingly, all three algorithms require approximately
the same computing time (Tab. 1). Taken together, the learning
process of CorrER is data-efficient (in contrast to SBATCH) and
similar to DetRL (in comparison to ER).

However, when applied to the two-state matching pennies envi-
ronment, CorrER fails drastically to retain similarity to SBATCH
learning and the DetRL dynamics concerning the learning trajec-
tory (Fig. 4). Here, both, in terms of the learning trajectory and
data-efficiency, CorrER and ER appear alike. This result is expected
since CorrER correlates its memorized experience only with respect
to its own policy. The policy and actions of other agents are not
considered. This suggests that extending CorrER to observe and
memorize not only own but the joint action, is a way to regain

State s=1 SBATCH State s=2
1.0 4 > > w ow U ¥ ¥ & « <«
so08] T 7 Tt w | Sog{r ¥ k2T
1 T T > oAy oy Il Yy b & e ® ™
o d o 4 w
e 0647 = (> « vy e 0.6 v * % %
1 0ad” * v ¥ » I 04{% ¥ " ® ®
N LI TNl RS N « 4
X029 % % w o« o o X 0.2+ N
0.0 4 “* - 0.0 > >
T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
XYs=0, a=0) XYs=1, a=0)
State s=1 State s=2
LOT7 > = x x y -0 2 & « <
BUUE ‘RSN NS DR
I T T > oA Ny oy I P
© 0.6 - © 0.6
e 0.6 v ? i‘\ « vy o 0.6 v ,‘a{ *®
1 0.4d” ‘~‘ “ v oy 104w w o« W= *ox
“)‘(&02 o Yo« e g oy :202 RSN h-/' L
ZIE R X % o« e o -4 - > > A 4
————
0'o—l T - l\ sl T 0.0" I» ll z T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
XYs=0, a=0) XYs=1, a=0)
State s=1 CorrER State s=2
L{ >+ < % T k& « <
A_(ru*,*‘)‘+ S M
5087\ 508
i 7T A | U N
o 4 - o 4 9
- 0617 % ? E.\ « v oy o 067y v » ,‘%{ *
044" "\‘(7y oy 04w « o« W= > %
w wn
It o AR B ot SN N—/‘ AR
X029 % % w o« o o < 0.2 . > P 74
S——
0.0" T - l\ «\' — T D.O-V — l» /" z T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
XYs=0, a=0) XYs=1, a=0)

Figure 4: Comparison between SBATCH, ER, and CorrER
learning (light blue straight lines) in the two-state match-
ing pennies game for K = K’ = 5000, ¢ = 0.05, § = 25,y = 0.75
and 10 sample runs. DetRL dynamics (dark red dashed line)
are shown for reference. Note that here, in the multi-agent
environment, CorrER trajectories are not closer to SBATCH
trajectories than the ones of ER.

similarity to the learning trajectory of DetRL. Additionally, in the
multi-agent case, CorrER and ER require approximately 60% more
computing time than SBATCH for a memory batch size of K = 5000
(Tab. 1). This suggests that the algorithmic complexity of CorrER
scales super-linearly with the dimension of the joint-action space.
Importantly, Fig. 4 shows that the DetRL dynamics - interpreted
in the infinite memory limit - represent a form of joint-action learn-
ing. Agents in multi-agent reinforcement learning settings can be
categorized into two categories [6, 31]: independent learners, which
learn Q-values only for their own actions and joint-action learn-
ers, where the learning takes place over the joint-action space [9].
This is interesting because the DetRL Q learning dynamics result
from the infinite batch limit of independent Q learners. However,
when interpreted as a form of memory replay, the DetRL dynamics
behave as if experience is replayed from the joint-action space.
Additionally, one can interpret the DetRL dynamics as a form of
model-based learning. Reinforcement learning algorithms can be
divided into two categories: model-free and model-based. Model-
free methods learn a value function directly from samples, whereas
model-based methods first learn a model of the environment. Ex-
perience replay can be interpreted as a form of model-based rein-
forcement learning [32]. This is interesting because the DetRL Q

learning dynamics result from the infinite batch limit of model-free
Q learners.

6 CONCLUSION

In this article we made the following contributions:

First, we provided a novel, data-inefficient, sample-batch rein-
forcement learning algorithm (SBATCH) and showed theoretically
and experimentally that it approaches the deterministic limit of
temporal difference reinforcement learning (DetRL) under large
batch sizes.

Second, we introduced a novel, data-efficient learning algorithm
that uses correlated experiences replay (CorrER). We showed experi-
mentally that the learning process of CorrER is data-efficient (in con-
trast to SBATCH) and similar to DetRL (in comparison to standard,
uncorrelated experience replay) when used within a single-agent
environment. However, when used in a multi-agent environment,
CorrER trajectories were not closer to the one of DetRL than the
ones of uncorrelated experience replay.

Taken together, we provide an individual agent interpretation for
the dynamics of learning. The deterministic limit of reinforcement
learning, which results from a time-scale separation of interaction
and adaptation, is like learning under infinite joint-action mem-
ory. Although derived from independent, model-free learners, this
suggests that these dynamics represent a form of model-based joint-
action reinforcement learning.

Especially when the evolutionary process is understood as a form
of social, cultural learning [17] we can state this equivalence as
follows. Evolutionary imitation learning from others’ experience in
an infinite population of equals resembles individual learning from
own experience under infinite memory of joint-action observations.
What is the infinite population limit of evolutionary dynamics is
an infinite memory limit of learning dynamics.

This result is of potential use for broadening the scope of previous
research in ecology and economics, where an infinite population
approximation is often used to study the convergence to equilibria
[11, 19, 24-26].

Furthermore, we hope that our results contribute to a better
understanding of the dynamics of collective reinforcement learn-
ing. Such an understanding is crucial to advance the practical use
of the study of collective learning dynamics to overcome critical
challenges of multi-agent reinforcement learning [2].

Outlook. Of course, much like an infinite population, infinite
memory of the joint actions is unrealistic. While both limits can
be interpreted as relative frequencies of either phenotypes in a
population or state-action transition probabilities in an agent, future
work needs to develop dynamical systems methods to analyze finite
as well as selective memory recalls.

In this work, we focused on the DetRL dynamics in discrete time.
Future work needs to develop their continuous-time equivalents
and compare them with the discrete DetRL dynamics.

The presented, deterministic limit of temporal difference rein-
forcement learning retains all three essential parameters: the learn-
ing rate a, the intensity of choice § and the discount factor .
This parameter equivalence is important when learning dynam-
ics are used to aid the parameter tuning of learning algorithms
in high-dimensional environments. Future work needs to address

the conditions of how well batch or experience replay algorithms
converge to the DetRL dynamics.

Essentially, the structure of the reinforcement learning algorithm,
which leads to the DetRL dynamics, consists of two additions to
the basic Q-update, experience replay and two data structures to
estimate the state-action values. This structure is similar to the
one of the influential DQN algorithm [23], although significant
differences remain. It is interesting to explore these connections in
more detail in future work.

Acknowledgements

W.B. thanks Richard P. Mann for comments on the manuscript.

REFERENCES

[1] Sherief Abdallah and Michael Kaisers. 2013. Addressing the policy-bias of q-
learning by repeating updates. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems. International Foundation for
Autonomous Agents and Multiagent Systems, 1045-1052.

[2] Wolfram Barfuss. 2020. Towards a unified treatment of the dynamics of collective
learning. Accepted for AAAI Spring Symposium: Challenges and Opportunities for
Multi-Agent Reinforcement Learning (2020).

[3] Wolfram Barfuss, Jonathan F Donges, and Jurgen Kurths. 2019. Deterministic
limit of temporal difference reinforcement learning for stochastic games. Physical
Review E 99, 4 (2019), 043305.

[4] Wolfram Barfuss, Jonathan F Donges, Steven J Lade, and Jirgen Kurths. 2018.
When optimization for governing human-environment tipping elements is nei-
ther sustainable nor safe. Nature communications 9, 1 (2018), 2354. https:
//doi.org/10.1038/s41467-018-04738-z

[5] Alex J Bladon and Tobias Galla. 2011. Learning dynamics in public goods games.
Physical Review E 84, 4 (oct 2011). https://doi.org/10.1103/physreve.84.041132

[6] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. 2015. Evo-
lutionary Dynamics of Multi-Agent Learning: A Survey. Journal of Artificial
Intelligence Research 53 (aug 2015), 659-697. https://doi.org/10.1613/jair.4818

[7] Tilman Bérgers and Rajiv Sarin. 1997. Learning Through Reinforcement and
Replicator Dynamics. Journal of Economic Theory 77, 1 (nov 1997), 1-14. https:
//doi.org/10.1006/jeth.1997.2319

[8] L. Busoniu, R. Babuska, and B. De Schutter. 2008. A Comprehensive Survey

of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 38, 2 (mar 2008), 156-172.

https://doi.org/10.1109/tsmcc.2007.913919

Caroline Claus and Craig Boutilier. 1998. The dynamics of reinforcement learning

in cooperative multiagent systems. AAAI/IAAI 1998, 746-752 (1998), 2.

[10] John G. Cross. 1973. A Stochastic Learning Model of Economic Behavior. The

Quarterly Journal of Economics 87, 2 (may 1973), 239. https://doi.org/10.2307/

1882186

Michael Doebeli and Christoph Hauert. 2005. Models of cooperation based on the

Prisoner’s Dilemma and the Snowdrift game. Ecology letters 8, 7 (2005), 748-766.

Tobias Galla. 2009. Intrinsic Noise in Game Dynamical Learning. Physical Review

Letters 103, 19 (nov 2009). https://doi.org/10.1103/physrevlett.103.198702

[13] Tobias Galla. 2011. Cycles of cooperation and defection in imperfect learning.

Journal of Statistical Mechanics: Theory and Experiment 2011, 08 (aug 2011),

P08007. https://doi.org/10.1088/1742-5468/2011/08/p08007

Tobias Galla and J. Doyne Farmer. 2013. Complex dynamics in learning compli-

cated games. Proceedings of the National Academy of Sciences 110, 4 (jan 2013),

1232-1236. https://doi.org/10.1073/pnas.1109672110

Daniel Hennes, Michael Kaisers, and Karl Tuyls. 2010. RESQ-learning in stochastic

games. In Adaptive and Learning Agents Workshop at AAMAS. 8.

[16] Daniel Hennes, Karl Tuyls, and Matthias Rauterberg. 2009. State-coupled replica-
tor dynamics. In Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009). 789-796.

[17] Joseph Henrich and Robert Boyd. 2002. On modeling cognition and culture.
Journal of Cognition and Culture 2, 2 (2002), 87-112.

[18] Josef Hofbauer and Karl Sigmund. 1998. Evolutionary games and population

dynamics. Cambridge university press.

Josef Hofbauer and Karl Sigmund. 2003. Evolutionary game dynamics. Bulletin

of the American mathematical society 40, 4 (2003), 479-519.

Michael Kaisers and Karl Tuyls. 2010. Frequency adjusted multi-agent Q-learning.

In Proceedings of the 9th International Conference on Autonomous Agents and

Multiagent Systems: volume 1-Volume 1. International Foundation for Autonomous

Agents and Multiagent Systems, 309-316.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. 2012. Batch reinforcement

learning. In Reinforcement learning. Springer, 45-73.

[9

[11

[12

[14

[15

[19

[20

[21

[22

Long-JiLin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine learning 8, 3-4 (1992), 293-321.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540 (feb
2015), 529-533. https://doi.org/10.1038/nature14236
Martin A Nowak and Karl Sigmund. 2004. Evolutionary dynamics of biological
games. science 303, 5659 (2004), 793-799.
[25] Jorge M Pacheco, Francisco C Santos, Max O Souza, and Brian Skyrms. 2009.
Evolutionary dynamics of collective action in N-person stag hunt dilemmas.
Proceedings of the Royal Society B: Biological Sciences 276, 1655 (2009), 315-321.
Fernando P Santos, Francisco C Santos, Ana Paiva, and Jorge M Pacheco. 2015.
Evolutionary dynamics of group fairness. Journal of theoretical biology 378 (2015),
96-102.
Yuzuru Sato and James P Crutchfield. 2003. Coupled replicator equations for the
dynamics of learning in multiagent systems. Physical Review E 67, 1 (jan 2003).
https://doi.org/10.1103/physreve.67.015206
Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.
Karl Tuyls and Ann Nowé. 2005. Evolutionary game theory and multi-agent
reinforcement learning. The Knowledge Engineering Review 20, 1 (2005), 63-90.
Karl Tuyls, Katja Verbeeck, and Tom Lenaerts. 2003. A selection-mutation model
for g-learning in multi-agent systems. In Proceedings of the second international
Jjoint conference on Autonomous agents and multiagent systems. ACM, 693-700.
Karl Tuyls and Gerhard Weiss. 2012. Multiagent learning: Basics, challenges, and
prospects. Ai Magazine 33, 3 (2012), 41-41.
[32] Harm Vanseijen and Richard Sutton. 2015. A deeper look at planning as learning
from replay. In International conference on machine learning. 2314-2322.
[33] Peter Vrancx, Karl Tuyls, and Ronald Westra. 2008. Switching dynamics of
multi-agent learning. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent systems (AAMAS 2008). 307-313.
Shangtong Zhang and Richard Sutton. 2018. A Deeper Look at Experience Replay.
arXiv preprint arXiv:1712.01275 (2018).

[23

[24

[26

[27

[28

[29

[30

[31

[34

A APPENDIX

Table 1: Average computing times in seconds (computed on
a standard personal computer).

Temporal risk reward dilemma
Batch size K | SBATCH CorrER ER

50 0.66 0.60 0.81
500 5.97 4.43 4.22
5000 58.6 60.7 65.6

Two state matching pennies
Batch size K | SBATCH CorrER ER

50 1.16 1.02 1.28
500 8.59 7.85 8.10
5000 85.3 135 147

https://doi.org/10.1038/s41467-018-04738-z
https://doi.org/10.1038/s41467-018-04738-z
https://doi.org/10.1103/physreve.84.041132
https://doi.org/10.1613/jair.4818
https://doi.org/10.1006/jeth.1997.2319
https://doi.org/10.1006/jeth.1997.2319
https://doi.org/10.1109/tsmcc.2007.913919
https://doi.org/10.2307/1882186
https://doi.org/10.2307/1882186
https://doi.org/10.1103/physrevlett.103.198702
https://doi.org/10.1088/1742-5468/2011/08/p08007
https://doi.org/10.1073/pnas.1109672110
https://doi.org/10.1038/nature14236
https://doi.org/10.1103/physreve.67.015206

	Abstract
	1 Introduction
	2 Background
	2.1 Stochastic games
	2.2 Temporal difference Q learning
	2.3 Testbeds

	3 Sample-Batch Learning
	4 Deterministic Limit
	4.1 Results and discussion

	5 Correlated experience replay
	5.1 Results and discussion

	6 Conclusion
	References
	A Appendix

