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ABSTRACT
We study the problem of two competing camps aiming to maximize
the adoption of their respective opinions, by optimally investing
in nodes of a social network in two phases. The final opinion of
a node in phase 1 acts as its bias in phase 2, and this bias deter-
mines the effectiveness of a camp’s investment on the node. Using
an extension of Friedkin-Johnsen model of opinion dynamics, we
formulate the camps’ utility functions. We show the existence and
polynomial time computability of Nash equilibrium under reason-
able assumptions. Using simulations, we quantify the effects of the
nodes’ biases and the weightage attributed to them, as well as that
of a camp deviating from its equilibrium strategy.

1 INTRODUCTION
We consider two competing camps with positive and negative opin-
ion values (referred to as good and bad camps respectively), aiming
to maximize the adoption of their respective opinions in a social net-
work. With the opinion adoption quantified as the sum of opinion
values of all nodes [19, 20], the good camp aims to maximize this
sum while the bad camp aims to minimize it. Since nodes update
their opinions based on their neighbors’ opinions [1, 14], a camp
would want to influence the opinions of influential nodes by invest-
ing on them. Thus given a budget constraint, the strategy of a camp
comprises of: how much to invest and on which nodes, in presence
of a competing camp which would also invest strategically.

Motivation. In Friedkin-Johnsen model [15, 16], a node’s bias
plays a critical role in determining its final opinion, and conse-
quently the opinions of its neighbors, and so on. If nodes give
significant weightage to their biases, the camps would want to in-
fluence these biases. This could be achieved by campaigning in two
phases, wherein a node’s opinion at the end of phase 1 would act as
its biased opinion in phase 2. Further, a node’s bias often impacts a
camp’s effectiveness on that node. If a node’s bias is positive, the
good camp’s investment on it is likely to be more effective than
the bad camp’s. The reasoning is on similar lines as the bounded
confidence model [25], wherein a node pays more attention to opin-
ions that do not differ too much from its own. Hence, a camp’s
investment in phase 1 not only gives it a head start in phase 2 by
influencing the biases, but also enhances the effectiveness of its
investment in phase 2. With the possibility of campaigning in two
phases, a camp could not only decide which nodes to invest on, but
also how to split its available budget between the two phases.
∗The original journal publication appears in Information Processing & Management
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Related Work. Problems related to maximizing opinion adop-
tion in social networks have been extensively studied [11, 14, 18,
21, 24, 26, 28]. The competitive setting has resulted in several game
theoretic studies [2, 4, 8, 17]. For analytically tractable models such
as Friedkin-Johnsen, there have been studies to determine optimal
investments on nodes [5, 8, 13, 20]. Our work extends these studies
to two phases, by identifying influential nodes in the two phases
and how much they should be invested on in each phase.

There have been a few studies on adaptive selection of influential
nodes in phases [3, 6, 7, 12, 22, 29–33]. While the reasoning behind
phases in these studies is to adaptively select nodes based on previ-
ous observations, we use them for influencing nodes’ biases; this
necessitates a very different conceptual and analytical treatment.
In our earlier work [9], we assumed the effectiveness of a camp’s
investment on a node to be independent of the node’s bias. This
work relaxes that assumption and undertakes a more general study.

2 OUR MODEL
We represent social network as a weighted directed graph, with set
of nodes𝑉 . Table 1 presents the notation. As our opinion dynamics
runs in two phases, most parameters have two values, one for each
phase. For such a parameter, we denote its value corresponding to
phase 𝑝 using superscript (𝑝). In our setting, the bias of node 𝑖 in
phase 2 is 𝑧 (1)

𝑖
, which is its opinion value at the end of phase 1.

Since a node’s bias impacts the effectiveness of camps’ invest-
ments on it, 𝑧 (𝑝−1)

𝑖
> 0 would likely lead to 𝑤 (𝑝)

𝑖𝑔
> 𝑤

(𝑝)
𝑖𝑏

. As 𝑤0
𝑖𝑖

quantifies the weightage given by node 𝑖 to its bias, we propose
the following natural model (where 𝑤 (𝑝)

𝑖𝑔
+ 𝑤 (𝑝)

𝑖𝑏
= \𝑖 ): 𝑤

(𝑝)
𝑖𝑔

=

\𝑖
2
(
1 +𝑤0

𝑖𝑖
𝑧
(𝑝−1)
𝑖

)
and𝑤 (𝑝)

𝑖𝑏
=

\𝑖
2
(
1 −𝑤0

𝑖𝑖
𝑧
(𝑝−1)
𝑖

)
.

Table 1: Notation

𝑧0
𝑖

initial biased opinion of node 𝑖 in phase 1
𝑤0
𝑖𝑖

weightage attributed by node 𝑖 to its bias
𝑤𝑖 𝑗 weightage attributed by node 𝑖 to the opinion of node 𝑗

\𝑖 total weightage attributed by node 𝑖 to the camps’ opinions
𝑤
(𝑝 )
𝑖𝑔

weightage attributed by node 𝑖 to good camp in phase 𝑝
𝑤
(𝑝 )
𝑖𝑏

weightage attributed by node 𝑖 to bad camp in phase 𝑝
𝑥
(𝑝 )
𝑖

investment made by good camp on node 𝑖 in phase 𝑝
𝑦
(𝑝 )
𝑖

investment made by bad camp on node 𝑖 in phase 𝑝
𝑘𝑔 total budget of the good camp
𝑘𝑏 total budget of the bad camp
𝑧
(𝑝 )
𝑖

opinion of node 𝑖 at the end of phase 𝑝
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As the influence of good camp on node 𝑖 in phase 𝑝 would be an
increasing function of its investment 𝑥 (𝑝)

𝑖
and weightage𝑤 (𝑝)

𝑖𝑔
, we

consider the influence to be +𝑤 (𝑝)
𝑖𝑔

𝑥
(𝑝)
𝑖

. Similarly, −𝑤 (𝑝)
𝑖𝑏

𝑦
(𝑝)
𝑖

is the
influence of bad camp (negative opinion) on node 𝑖 . Considering
budget constraints, the camps should invest in the two phases such
that

∑
𝑖∈𝑉

(
𝑥
(1)
𝑖
+ 𝑥 (2)

𝑖

)
≤ 𝑘𝑔 and

∑
𝑖∈𝑉

(
𝑦
(1)
𝑖
+ 𝑦 (2)

𝑖

)
≤ 𝑘𝑏 .

Generalizing Friedkin-Johnsen update rule to two phases and
accounting for camps’ investments, the update rule in phase 𝑝 is:

∀𝑖 ∈ 𝑉 : 𝑧
(𝑝 )
𝑖
← 𝑤0

𝑖𝑖𝑧
(𝑝−1)
𝑖

+
∑
𝑗∈𝑉

𝑤𝑖 𝑗𝑧
(𝑝 )
𝑗
+ 𝑤 (𝑝 )

𝑖𝑔
𝑥
(𝑝 )
𝑖
− 𝑤 (𝑝 )

𝑖𝑏
𝑦
(𝑝 )
𝑖

Let Δ = (I −W)−1, whereW is the matrix consisting of weights
𝑤𝑖 𝑗 . Let 𝑏 𝑗𝑖 = 𝑟 𝑗𝑤

0
𝑗 𝑗
Δ 𝑗𝑖 and 𝑐𝑖 = 𝑤0

𝑖𝑖
𝑧0
𝑖
. Let 𝑟𝑖 =

∑
𝑗 ∈𝑉 Δ 𝑗𝑖 and

𝑠𝑖 =
∑

𝑗 ∈𝑉 𝑟 𝑗𝑤
0
𝑗 𝑗
Δ 𝑗𝑖 . The sum of opinion values of the nodes at the

end of phase 2 can be derived to be:∑
𝑖∈𝑉

𝑧
(2)
𝑖

=
∑
𝑖∈𝑉

∑
𝑗∈𝑉

𝑐𝑖𝑏 𝑗𝑖 +
∑
𝑗∈𝑉

𝑥
(2)
𝑗

\ 𝑗

2

(∑
𝑖∈𝑉

𝑐𝑖𝑏 𝑗𝑖 +𝑟 𝑗
)
+
∑
𝑗∈𝑉

𝑦
(2)
𝑗

\ 𝑗

2

(∑
𝑖∈𝑉

𝑐𝑖𝑏 𝑗𝑖−𝑟 𝑗
)

+
∑
𝑖∈𝑉

𝑥
(1)
𝑖

\𝑖

2 (1 + 𝑐𝑖 )
(
𝑠𝑖 +

∑
𝑗∈𝑉

𝑥
(2)
𝑗

\ 𝑗

2 𝑏 𝑗𝑖 +
∑
𝑗∈𝑉

𝑦
(2)
𝑗

\ 𝑗

2 𝑏 𝑗𝑖

)
−
∑
𝑖∈𝑉

𝑦
(1)
𝑖

\𝑖

2 (1 − 𝑐𝑖 )
(
𝑠𝑖 +

∑
𝑗∈𝑉

𝑥
(2)
𝑗

\ 𝑗

2 𝑏 𝑗𝑖 +
∑
𝑗∈𝑉

𝑦
(2)
𝑗

\ 𝑗

2 𝑏 𝑗𝑖

)
(1)

Two-phase Katz Centrality. 𝑟𝑖 resembles Katz centrality of
node 𝑖 [23], capturing its influencing power over other nodes in a
single phase setting (corresponds to phase 2 in two-phase setting
since it is the terminal phase). However, while selecting nodes to
invest on in phase 1, the effective power of node 𝑖 depends on its
influencing power over those nodes ( 𝑗 ), which would give good
weightage (𝑤0

𝑗 𝑗
) to their biases in phase 2, as well as have a good

influencing power over other nodes (𝑟 𝑗 ) in phase 2. This is captured
by 𝑠𝑖 , and can be interpreted as the two-phase Katz centrality.

3 PROBLEM FORMULATION AND RESULTS
Let x(p) and y(p) be the vectors consisting of 𝑥 (𝑝)

𝑖
and 𝑦 (𝑝)

𝑖
, respec-

tively. Hence, (x(1) , x(2) ) and (y(1) , y(2) ) are the strategies of the
good and bad camps. Let𝑢𝑔 (·) and𝑢𝑏 (·) be their respective utilities.
The good camp aims to maximize the value of Equation (1), while
the bad camp aims to minimize it. Hence, the problem is:

Find Nash equilibrium, given that

𝑢𝑔
(
(x(1) , x(2) ), (y(1) , y(2) )

)
=
∑
𝑖∈𝑉

𝑧
(2)
𝑖

, 𝑢𝑏
(
(x(1) , x(2) ), (y(1) , y(2) )

)
= −

∑
𝑖∈𝑉

𝑧
(2)
𝑖

subject to∑
𝑖∈𝑉

(
𝑥
(1)
𝑖
+ 𝑥 (2)

𝑖

)
≤ 𝑘𝑔 ,

∑
𝑖∈𝑉

(
𝑦
(1)
𝑖
+ 𝑦 (2)

𝑖

)
≤ 𝑘𝑏 , ∀𝑖 ∈𝑉 : 𝑥 (1)

𝑖
, 𝑥
(2)
𝑖

, 𝑦
(1)
𝑖

, 𝑦
(2)
𝑖
≥ 0

Optimal Strategy in Absence of Competing Camp. In ab-
sence of the bad camp (𝑦 (1)

𝑖
= 𝑦
(2)
𝑖

= 0,∀𝑖 ∈ 𝑉 in Equation (1)), let
the good camp split its budget 𝑘𝑔 such that 𝑘 (1)𝑔 and 𝑘 (2)𝑔 are the
respective investments in phases 1 and 2. It can be shown that, in
the search space 𝑘 (1)𝑔 + 𝑘 (2)𝑔 ∈ (0, 𝑘𝑔 ], it is optimal for the good
camp to exhaust its entire budget (𝑘 (1)𝑔 + 𝑘 (2)𝑔 = 𝑘𝑔 ), and to invest
on at most one node in each phase. Consider 𝛼 and 𝛽 to be the
candidate nodes to invest on in phases 1 and 2 respectively. It can
be derived that the optimal 𝑘 (1)𝑔 ∈ (0, 𝑘𝑔 ] for node pair (𝛼, 𝛽) is:

min
{
max

{
𝑘𝑔

2 +
𝑠𝛼

\𝛽𝑟𝛽𝑤
0
𝛽𝛽

Δ𝛽𝛼

−
1 + 𝑤0

𝛽𝛽

∑
𝑖∈𝑉 Δ𝛽𝑖𝑤

0
𝑖𝑖
𝑧0
𝑖

\𝛼𝑤
0
𝛽𝛽

Δ𝛽𝛼 (1 + 𝑤0
𝛼𝛼𝑧

0
𝛼 )

, 0
}
, 𝑘𝑔

}
and the corresponding optimal 𝑘 (2)𝑔 ∈ (0, 𝑘𝑔 ] is 𝑘𝑔−𝑘 (1)𝑔 . Intuitively,
a high 𝑠𝛼 encourages a high investment in phase 1, while a high 𝑟𝛽
drives the investment towards phase 2. Among the |𝑉 |2 + 1 possible
node pairs, namely, (𝛼, 𝛽) ∈ 𝑉 ×𝑉 ∪ {(𝜙, 𝜙)} where (𝜙, 𝜙) captures
𝑘
(1)
𝑔 = 𝑘

(2)
𝑔 = 0, we determine the pair (𝛼∗, 𝛽∗) that maximizes

Equation (1). Thus, the resulting optimal strategy is to invest the
optimal 𝑘 (1)𝑔 (corresponding to pair (𝛼∗, 𝛽∗)) on node 𝛼∗ in phase
1, and the corresponding optimal 𝑘 (2)𝑔 on node 𝛽∗ in phase 2.

Nash Equilibrium Strategy Profile. Similar to above, we first
show that it is optimal for either camp to invest on at most one node
in each phase. Consider (𝛼, 𝛽) and (𝛾, 𝛿) to be the candidate node
pairs for the good and bad camps, respectively. For a given node pro-
file ((𝛼, 𝛽), (𝛾, 𝛿)), we derive 𝑘 (1)𝑔 and 𝑘 (1)

𝑏
by determining the sad-

dle point of Equation (1). For this, wemake practically reasonable as-
sumptions:𝑤𝑖 𝑗 ≥ 0,∀(𝑖, 𝑗) and𝑤0

𝑖𝑖
≥ 0, \𝑖 ≥ 0, 𝑧0

𝑖
∈ [−1, 1],∀𝑖 ∈ 𝑉 ,

under which
∑
𝑖∈𝑉 𝑧

(2)
𝑖

is concave w.r.t. 𝑘 (1)𝑔 and convex w.r.t. 𝑘 (1)
𝑏

.
On deriving 𝑘 (1)𝑔 , 𝑘

(2)
𝑔 , 𝑘

(1)
𝑏

, 𝑘
(2)
𝑏

corresponding to the saddle point
for node profile ((𝛼, 𝛽), (𝛾, 𝛿)), we compute the value of Equa-
tion (1). Consequently, we create a transformed two-player zero-
sum game with each player having |𝑉 |2 + 1 pure strategies, where
each pure strategy corresponds to a node pair. In such a game, Nash
equilibrium exists and can be found efficiently using linear program-
ming [27]. The elaborate methodology including the expressions
for 𝑘 (1)𝑔 , 𝑘

(2)
𝑔 , 𝑘

(1)
𝑏

, 𝑘
(2)
𝑏

are provided in [10].

Simulation Results. Following are some highlights of the sim-
ulation results observed on real-world network datasets:
• A low investment in phase 1 results in poor biases for phase 2,
resulting in unfavorable opinion values to start with in phase 2, and
also less effectiveness of investment in phase 2. A high investment
in phase 1 spares less budget for phase 2, resulting in the inability
to fully harness the influenced biases. Hence, there is a tradeoff.
• Higher𝑤0

𝑖𝑖
’s drive the camps to invest more in phase 1 so as to

have favorable opinions at the end of phase 1 and hence favorable
biases for phase 2. This plays a key role in determining the final
opinion owing to the high weightage attributed to biases in phase 2
and also the enhanced effectiveness of investments in phase 2.
• Higher 𝑧0

𝑖
’s result in a better utility for the good camp (and worse

utility for the bad camp), not only because of the head start, but
also due to the good camp’s investments being more effective.
• The loss incurred by deviating from Nash equilibrium strategy to
a myopic strategy (investing the entire budget in phase 1) is signifi-
cant for low𝑤0

𝑖𝑖
’s, since in this range, it is actually optimal to invest

most of the budget in phase 2. For high𝑤0
𝑖𝑖
’s, however, we observe

that the equilibrium strategy is to invest heavily in phase 1, thus
resulting in myopic strategy not being a poor choice. On the other
hand, if a camp deviates to a strategy, which is its optimal one in
absence of the competing camp, the loss is observed to be relatively
less for the entire range of 𝑤0

𝑖𝑖
’s. To arrive at more generalizable

results, further efficient algorithms of computing Nash equilibrium
are warranted, for simulations with larger networks.
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