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ABSTRACT

In this paper, we introduce ballooning multi-armed bandits (BL-
MAB), a novel extension to the classical stochastic MAB model. In
the BL-MAB model, the set of available arms grows (or balloons)
over time. In contrast to the classical MAB setting where the regret
is computed with respect to the best arm overall, the regret in a
BL-MAB setting is computed with respect to the best available arm
at each time. We first observe that the existing stochastic MAB
algorithms are not regret-optimal for the BL-MAB model. We show
that if the best arm is equally likely to arrive at any time, a sub-
linear regret cannot be achieved, irrespective of the arrival of other
arms. We further show that if the best arm is more likely to arrive in
the early rounds, one can achieve sub-linear regret. Our proposed
algorithm determines (1) the fraction of the time horizon for which
the newly arriving arms should be explored and (2) the sequence
of arm pulls in the exploitation phase from among the explored
arms. Making reasonable assumptions on the arrival distribution
of the best arm in terms of the thinness of the distribution’s tail,
we prove that the proposed algorithm achieves sub-linear instance-
independent regret. We further quantify explicit dependence of
regret on the arrival distribution parameters. We reinforce our
theoretical findings with extensive simulation results.

1 INTRODUCTION

The classical stochastic multi-armed bandit (MAB) problem pro-
vides an elegant abstraction to a number of important sequential
decision making problems. In this setting, the planner chooses (or
pulls) a single arm in each discrete time instant from a fixed pool
of finitely many arms for a finite number of time instants. Each
arm, when pulled, generates a reward from a fixed but a priori
unknown stochastic distribution corresponding to the pulled arm.
The planner’s goal is to minimize the regret, i.e., the loss incurred
in expected cumulative reward due to not knowing the reward dis-
tribution of the arms beforehand. The MAB problem encapsulates
the classical exploration versus exploitation dilemma, in that the
planner’s algorithm has to arrive at an optimal trade-off between
exploration (pulling relatively unexplored arms) and exploitation
(pulling the best arms according to the history of pulls thus far).
This problem has been extensively studied in the literature. These
studies include analyzing the lower bound on regret [21], anal-
ysis of asymptotically optimal algorithms [1, 5, 7, 29], empirical
studies [13, 16, 26], and several extensions [10, 27]. We provide a
detailed review of the relevant literature in Section 7.

The theoretical results in MAB are complemented by a wide
variety of modern applications which can be seamlessly modelled
in the MAB setup. Internet advertising [8, 25], crowdsourcing [19],

clinical trials [30], wireless communication [23] represent a few of
the many applications. Due to its wide applications and an elegant
theoretical foundation, many variants of the MAB problem have
been proposed. In this paper, we propose a novel variant which we
call Ballooning multi-armed bandits (BL-MAB). In contrast to the
classical MAB where the set of available arms is fixed throughout
the run of an algorithm, the set of arms in BL-MAB grows (or
balloons) over time. As the number of arms increases (potentially
linearly) with time, it is clear that an optimal algorithm has to ignore
(or drop) a few arms. Hence, in addition to achieving an optimal
trade-off between the number of exploratory pulls and exploitation
pulls, the algorithm must also ensure that it does not drop too many
or too few arms.

To see that the traditional algorithms are not regret-optimal in
the BL-MAB setting, consider the following thought experiment.
Let a new arm arrive at each time instant in decreasing order of
mean reward, and let the MAB algorithm run for a total of 𝑇 time
instants. The traditional MAB algorithms (such as UCB1, Moss etc.)
would pull the newly arrived arm at each time and thus would incur
a regret of 𝑂 (𝑇 ). Note here that the best arm appeared at the first
time instant itself, however, as the set of arms is monotonically
expanding over time, the algorithm could not sufficiently explore
the arms. Observe that the regret in BL-MAB depends not only on
the mean reward of the arms, but also on when they arrive. Hence,
any BL-MAB algorithm ought to be aware of the arrival of the arms.

Motivation

We motivate the practical significance of BL-MAB with a few appli-
cations. In general, BL-MAB is directly applicable in any scenario
where the set of options grows over time, and, the objective is to
choose the best option available at any given time.

A contemporary example is provided by question and answer
(Q&A) platforms such as Reddit, Stack Overflow, Quora, Yahoo!
Answers, and ResearchGate, where the platform’s goal is to discover
the highest quality answer that should be displayed in the most
prominent slot, for a given question. Each answer post is modeled as
a distinct arm of a BL-MAB instance, and the rewards are distributed
according to a Bernoulli distribution parameterized by the quality
of the posted answer. Note that this quality is a priori unknown to
the platform and hence needs to be learnt. For this, the platform
employs certain endorsement mechanisms with indicators such
as upvotes, likes, and shares (or re-posts). A user endorses the
answer that is displayed to her, if she likes it. Each display of a
posted answer corresponds to a pull of the corresponding arm. At
each time instant, a new user observes the existing answer posts
shown by the platform, decides whether to endorse them, and may



also choose to post her own answer, thus increasing the number
of available arms. Hence, the number of available arms (answers)
monotonically increases over time.

The problem of learning qualities of the answers on Q&A forums
has been modeled under the MAB framework in various studies [17,
22, 28]. However, these studies resort to the existingMAB variations
which are not well suited for Q&A forums. For instance, Ghosh and
Hummel [17] model the problem with a classical MAB framework
by limiting the number of arms via strategic choice of an agent, by
assuming that a user incurs a certain cost for posting an answer
and hence posts it only if she derives a positive utility by doing
so. However, a user’s behavior on the platform may be driven by
simple cognitive heuristics rather than a well calibrated strategic
decision [11]. In another work [22], the number of arms is limited
by randomly dropping some of the arms from consideration. The
regret is then computed with respect to only the considered arms.
That is, they do not account for the regret incurred due to the
randomly dropped arms.

Some of the other applications of BL-MAB framework are in
various websites that feature user reviews, such as Amazon and Flip-
kart (product reviews), Tripadvisor (hotel reviews), IMDB (movie
reviews). As time progresses, the reviews for a product (or a hotel
or a movie) keep arriving, and the website aims to display the most
useful reviews for that product (or hotel or movie) at the top. The
usefulness of a review is estimated using users’ endorsements for
that review, similar to that in Q&A forums. BL-MAB is also appli-
cable in scenarios where users comment on a video or news article
on a video or news hosting website, where the website’s objective
is to display the most popular or interesting comment on the top.

The BL-MAB setting thus provides a natural framework to be
considered in such type of applications. It needs an independent
investigation owing to a number of reasons. For instance, one of the
MAB variants that holds some similarity with BL-MAB is sleeping
multi-armed bandit (S-MAB) [14, 20], where a subset of a fixed
set of base arms is available at each time instant. Though the S-
MAB framework captures the availability of a small subset of arms
at each time, it assumes that the set of base arms is fixed and is
small as compared to the time horizon. In contrast, the BL-MAB
framework allows for the number of available arms to increase,
potentially linearly with time. Hence, an optimal sleeping bandits
algorithm such as Auer would end up giving a linear regret in
BL-MAB setting.

Another MAB variant which is somewhat similar is the many-
armed (potentially infinite) bandit [9, 12, 31], where the number of
arms could be potentially equal to or greater than the time horizon.
Berry et al. [9] consider the case of an infinite arm bandit with
Bernoulli reward distribution. However, they consider that the
optimal arm has a quality of 1, which is seldom the case in practical
applications. Other investigations considering infinitely many arms
[12, 31] make certain assumptions on the distribution of the near
optimal arm to achieve sub-linear regret. Further, all the above
works consider that all the arms are available in all time instants,
and hence use the traditional notion of regret. In our case, the regret
incurred by an algorithm in a given time instant is the difference
between the quality of the best available arm during that time and
the quality of the arm pulled by the algorithm (same as the notion
of regret considered in sleeping bandits). The BL-MAB framework

is thus an interesting blend of both the sleeping bandit model and
the infinite arms bandit model.

Our Contributions

• We introduce the BL-MAB model that allows the set of arms to
grow over time.

• We show for the BL-MAB model that the regret will grow linearly
with time, in the absence of any distributional assumption on the
arrival time of the highest quality arm (Theorem 3.1).

• We propose an algorithm (BL-Moss) which determines: (1) the
fraction of the time horizon until which the newly arriving arms
should be explored at least once and (2) the sequence of arm pulls
during the exploitation phase. Our key finding is that BL-Moss
achieves sub-linear regret under practical and minimal assump-
tions on the arrival distribution of the best arm, namely, sub-
exponential tail (Theorem 5.3) and sub-Pareto tail (Theorem 5.5).
Note that we make no assumption on the arrival of the other arms.
As the regret depends on the qualities of the arms and the se-
quence of their arrivals, it is interesting that with sub-exponential
and sub-Pareto assumption on only the best arm’s arrival pattern,
we can achieve sub-linear regret.

• We carry out a pertinent simulation study to empirically observe
how the expected regret varies with the time horizon. We find a
strong validation for our theoretically derived regret bounds.

The paper is organized as follows. In Section 2, we present the
BL-MAB model. In Section 3, we first show that if the best arm
arrives uniformly at random, one cannot achieve sub-linear regret.
We hence define two distributions on the arrival time of the best
arm which enables us to achieve sub-linear regret. Next, we present
some preliminaries in Section 4, followed by our proposed algo-
rithm and its theoretical analysis in Section 5. Section 6 presents
our simulation results. We conclude the paper with related work
(Section 7) and future directions (Section 8).

2 THE MODEL

A classical MAB instance is given by the tuple ⟨𝐾, (D𝑖 )𝑖∈𝐾 ⟩. Here,
𝐾 is a fixed set of arms and D𝑖 is the reward distribution corre-
sponding to an arm 𝑖 . Denote by 𝑞𝑖 , the mean of distribution D𝑖 .
Consider that each of the distributionsD𝑖 is supported over a finite
interval and is unknown to the algorithm. Throughout the paper,
without loss of generality, we consider that D𝑖 is supported over
[0, 1]. Further, we will refer to 𝑞𝑖 as the quality of the arm 𝑖 . A MAB
algorithm is run in discrete time instants, and the total number of
time instants is denoted by time horizon 𝑇 . In each time instant
aka round, the algorithm selects a single arm and observes the
reward corresponding to the selected arm. The arms which are not
selected, do not give any reward. More precisely, a MAB algorithm
is a mapping from the history of arm pulls and obtained rewards,
to the set of arms.

At each time instant, a BL-MAB algorithm chooses a single arm
from the set of available arms and receives a reward generated
randomly according to the reward distribution D𝑖 of the chosen
arm 𝑖 . New arms may spring up at each time instant. Throughout
the paper, we consider that at most one new arm arrives at each
time, and the arms are never dropped. Let 𝐾 (𝑡) denote the set of
arms available at round 𝑡 . In the BL-MABmodel, this set of available
arms grows by at most one arm per round, i.e., 𝐾 (𝑡) ⊆ 𝐾 (𝑡 + 1) and
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|𝐾 (𝑡) | ≤ |𝐾 (𝑡 + 1) | ≤ |𝐾 (𝑡) | + 1. A BL-MAB instance, therefore, is
given by ⟨𝑇, (𝐾 (𝑡), (D𝑖 )𝑖∈𝐾 (𝑡 ) )𝑇𝑡=1⟩.

Similar to the notion of regret in the sleeping stochastic MAB
model, we introduce the notion of regret in BL-MAB setting that
takes into account the availability of the arms at each time 𝑡 . Let 𝑖𝑡
denote the arm pulled by the algorithm and 𝑖★𝑡 be the best available
arm at time 𝑡 , i.e., 𝑖★𝑡 = argmax𝑖∈𝐾 (𝑡 ) 𝑞𝑖 . Further, let I denote a
BL-MAB instance and 𝐴 be a BL-MAB algorithm. The instance-
dependent regret of 𝐴 is given by

R𝐴 (𝑇,I) = E
[ 𝑇∑
𝑡=1

(𝑞𝑖★𝑡 − 𝑞𝑖𝑡 )
]
.

Throughout the paper, we consider instance-independent re-
gret given as R𝐴 (𝑇 ) = supI R𝐴 (𝑇,I). Note that the instance-
independent regret bound is a worst case regret bound over all the
arrival sequences of the arms and all possible reward distributions.
In the next section, we show, for the BL-MAB setting, that it is not
possible to achieve sublinear instance-independent regret bound.

3 LOWER BOUND ON REGRET

As pointed out in Section 1, it is clear that UCB-style algorithms
(which pull arms based on uncertainty) would pull each incoming
arm at least once, leaving no rounds for exploitation. Hence, they
incur linear regret in the ballooning bandit setup (in particular,
when 𝐾 (𝑡) = 𝑡 ). However, it is not obvious that a different, more
sophisticated algorithm (such as the one which randomly drops
some arms) may not be able to achieve sub-linear regret. Our first
result (Theorem 3.1) shows that no algorithm can attain sub-linear
regret under a general BL-MAB setting.

Consider the following BL-MAB instanceI. Let there be a unique
best arm 𝑖★with quality𝑞𝑖★ = 1/2 + 𝜀 and all other arms 𝑗 ≠ 𝑖★ have
quality 𝑞 𝑗 = 1/2. A new arm arrives at each time, i.e., |𝐾 (𝑡) | = 𝑡 .
Further, let the arrival of the best arm be uniformly distributed over
time, i.e., P(𝑡 = 𝑖★) = 1/𝑇 for all 𝑡 = 1, 2, . . . ,𝑇 . Let 𝑖∗𝑡 denote the
optimal arm till time 𝑡 . Further, let𝐺 be the set of arms pulled by the
algorithm, i.e., 𝐺 = {𝑖 : 𝑁𝑖,𝑇 ≥ 1}. We will show that for any fixed
𝐺 ⊂ {1, 2, · · · ,𝑇 }, the expected regret is lower bounded by Ω(𝑇 ).
Here, expectation is taken over randomness in arrival of arms as
well as in the algorithm (if any). We first observe that an algorithm
that pulls |𝐺 | number of arms achieves the minimum regret when
it pulls the first |𝐺 | arms (see Claim 1 in Appendix).

Theorem 3.1. For the BL-MAB instance I, the expected regret of
any algorithm 𝐴 is lower bounded by Ω(𝑇 ).

Proof. The expected regret of a BL-MAB algorithm is given by

R𝐴 (𝑇 ) ≥ R𝐴 (𝑇,I) = E𝐴
[ 𝑇∑
𝑡=1

(𝑞𝑖★𝑡 − 𝑞𝑖𝑡 )
]

≥ 𝑃 (𝑖★ ∈ 𝐺)
∑
𝑖∈𝐺

E[𝑁𝑖,𝑇 ]Δ(𝑖★, 𝑖) +
∑
𝑖∉𝐺

𝑃 (𝑖★ = 𝑖) (𝑇 − 𝑖)Δ(𝑖★, 𝑖)

In the above expression, the first term represents the internal regret
of the learning algorithm and the second quantity is the external
regret. Here, Δ(𝑖∗, 𝑖) = 𝑞𝑖★ − 𝑞𝑖 = 𝜀 if 𝑖★ < 𝑖 and 0 otherwise. From
Claim 1, we have that an algorithm will incur least regret if it pulls
first |𝐺 | arms. Further, from the classical result in [21], in order
to separate the quality of the arms, we should have E[𝑁𝑖,𝑇 ] ≥

𝜂 · log(𝑇 ) for some positive problem dependent constant 𝜂, for all
𝑖 ∈ 𝐺 and 𝑖 ≠ 𝑖★. Hence, we have

R𝐴 (𝑇 ) ≥ 𝑃 (𝑖★ ∈ 𝐺)
|𝐺 |−1∑
𝑖=1

𝜂 log(𝑇 )𝜀 +
𝑇∑

𝑖= |𝐺 |+1
𝑃 (𝑖 = 𝑖★) (𝑇 − 𝑖)𝜀

=

[𝜂 |𝐺 | ( |𝐺 | − 1) log(𝑇 )
𝑇

+ (𝑇 − |𝐺 | − 1) (𝑇 − |𝐺 |)
2𝑇

]
· 𝜀

=

[
(1+2𝜂 log(𝑇 )) |𝐺 |2−(2(𝑇 −𝜂 log(𝑇 ))−1) |𝐺 |+𝑇 2−𝑇

]
· 𝜀
2𝑇

Note that the above expression is quadratic in |𝐺 |. For 𝑇 ≤ 1/2 +
𝜂 log(𝑇 ), the minimum occurs when the value of |𝐺 | is the least (in
the positive domain), which is 1, for which the above expression
cannot be sub-linear in 𝑇 . For the case where 𝑇 > 1/2 + 𝜂 log(𝑇 ),
the minimum occurs when |𝐺 | = 2(𝑇−𝜂 log(𝑇 ))−1

2(1+2𝜂 log(𝑇 )) . Hence,

R𝐴 (𝑇 ) ≥
[ (2(𝑇 −𝜂 log(𝑇 ))−1)2

4(1 + 2𝜂 log(𝑇 )) − (2(𝑇 −𝜂 log(𝑇 ))−1)2
2(1 + 2𝜂 log(𝑇 )) +𝑇 2−𝑇

]
· 𝜀
2𝑇

=

[
𝑇 2 −𝑇 − (𝑇 − 𝜂 log(𝑇 ) − 1/2)2

(1 + 2𝜂 log(𝑇 ))

]
· 𝜀
2𝑇

>

[ (𝑇 − 1/2)
2

2𝜂 log(𝑇 )
1 + 2𝜂 log(𝑇 ) − 1/4

]
· 𝜀 = Ω(𝑇 ) □

Theorem 3.1 provides a strong impossibility result on the achiev-
able instance-independent regret bound under BL-MAB setting.
However, one can still achieve sub-linear regret by imposing appro-
priate structure on the BL-MAB instances. Observe that the regret
depends on the arrival of arms, i.e., (𝐾 (𝑡))𝑇

𝑡=1, and their reward
distributions (D𝑖 )𝑖∈𝐾 (𝑡 ) . We impose restrictions on the arrival of
the best arm 𝑖★ = argmax𝑖∈𝐾 (𝑇 ) 𝑞𝑖 so that the probability that 𝑖★
arrives early is large enough; this would allow a learning algorithm
to explore the best arm enough to estimate the true quality of that
arm with high probability. As noted previously, the other arms may
arrive arbitrarily. Further note that we make no assumption on the
qualities of individual arms.

Arrival of the Best Arm

Let 𝑋 be the random variable denoting the time at which the
best arm arrives. Further, let 𝐹𝑋 (𝑡) denote the cumulative distri-
bution function of 𝑋 . In our first result, we use the following Sub-
exponential tail assumption on the arrival time of the best arm.

Sub-exponential tail. There exists a constant 𝜆 > 0 such that the
probability of the best arm arriving later than 𝑡 rounds, is upper
bounded by 𝑒−𝜆𝑡 , i.e., 𝐹𝑋 (𝑡) > 1 − 𝑒−𝜆𝑡 .

Next, we consider a relaxed condition on the tail probabilities,
i.e., when the tail does not shrink as fast as in the sub-exponential
case. We consider the family of distributions whose tail is thinner
than that of Pareto distribution.

Sub-Pareto tail. There exists a constant 𝛽 > 0 such that the proba-
bility of the best arm arriving later than 𝑡 rounds, is upper bounded
by 𝑡−𝛽 , i.e., 𝐹 (𝑡) > 1 − 𝑡−𝛽 .

The aforementioned assumptions naturally arise in the context
of Q&A forums as observed in extensive empirical studies on the
nature of answering as well as voting behavior of the users. An-
derson et al. [2] observe that high reputation users hasten to post
their answers early. One possible explanation for this phenomenon
could be that the users who are motivated by the visibility that
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their answers receive, tend to be more active on the platform and
also provide high quality answers early on, which explains their
reputation score. Thus, it is reasonable to assume that the best
answer arrives, with high probability, in early rounds.

Note that the uniform distribution is the limiting case of the
sub-exponential case, when 𝜆 = 0. We show that, while the uniform
distribution results in linear regret (Theorem 3.1), a sub-linear regret
can be achieved for BL-MAB instances having the best arm arrival
distribution with even slightly thinner tail than that of uniform
distribution.

4 PRELIMINARIES

We now present some essentials which will be useful for our analy-
sis in the remainder of the paper.

Lambert𝑊 Function

Definition 4.1. For any 𝑥 > −𝑒−1, the Lambert 𝑊 function,
𝑊 (𝑥), is defined as the solution to the equation 𝑤𝑒𝑤 = 𝑥 , i.e.,
𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥 .

Lambert𝑊 function satisfies the following properties [18]:

P 1. The Lambert𝑊 function can be equivalently written as the
inverse of the function 𝑓 (𝑥) := 𝑥𝑒𝑥 , i.e.,𝑊 (𝑥𝑒𝑥 ) = 𝑥 .

P 2. For any 𝑥 ∈ [0,∞), the Lambert𝑊 function is unique, non-
negative, and strictly increasing.

P 3. For any 𝑥 ≥ 𝑒 , we have log(𝑥)/2 <𝑊 (𝑥) ≤ log(𝑥).

It can be noted that it is easy to numerically approximate𝑊 (𝑥)
for a given 𝑥 , using Newton-Raphson’s or Halley’s method. More-
over, there exist efficient numerical methods for evaluating it to
arbitrary precision [15].

The Moss Algorithm

We use Moss (Minimax Optimal Strategy in the Stochastic case) [3]
as a black box learning algorithm. For a fixed number of 𝑘 arms,
the Moss algorithm pulls an arm 𝑖𝑡 at time 𝑡 such that

𝑖𝑡 ∈ argmax
𝑖∈𝐾

[
𝑞𝑖,𝑁𝑖,𝑡

+

√√
max(log( 𝑇

𝑘 ·𝑁𝑖,𝑡
), 0)

𝑁𝑖,𝑡

]
.

Here, 𝐾 = {1, 2, · · · , 𝑘} denotes the set of arms and 𝑁𝑖,𝑡 is the
number of times arm 𝑖 was pulled before (and excluding) round
𝑡 and 𝑞𝑖,𝑁𝑖,𝑡

are the empirical estimates of the arm 𝑖 from 𝑁𝑖,𝑡
samples. Each arm is pulled once in the beginning, and ties are
broken arbitrarily. The following result gives an upper bound on
the expected regret of Moss which is optimal up to a constant factor
(it achieves the lower bound on regret given by [6]). Throughout
the paper, we use the notation Moss (K) to denote that the Moss
algorithm is run with set of arms 𝐾 .

Theorem 4.2. [Audibert and Bubeck [3]] For any time horizon
𝑇 ≥ 1, the expected regret of Moss is given by RMoss (𝑇 ) ≤ 6

√
𝑘𝑇 .

5 THE BL-MOSS ALGORITHM AND REGRET

ANALYSIS

The BL-Moss Algorithm

We now present our algorithm, BL-Moss (Algorithm 1), that uses
Moss as a black-box. The number of arms explored by BL-Moss is

Algorithm 1: BL-Moss
Input: Time horizon 𝑇 , Distributional parameter 𝜆 or 𝛽

Set 𝛼 :=

{
𝑊 (2𝜆𝑇 )

2𝜆𝑇 under sub-exponential tail property

𝑇
−2𝛽
1+2𝛽 under sub-Pareto tail property

for 𝑡 = 1, 2, . . .𝑇 do

Input: A newly arriving arm at time 𝑡
if |𝐾 (𝑡) | ≤ ⌈𝛼𝑇 ⌉ then

Moss (𝐾 (𝑡))
else

Moss (𝐾 (⌈𝛼𝑇 ⌉))

dependent on the distribution of arrival of the best arm. In particular,
BL-Moss considers only the first ⌈𝛼𝑇 ⌉ arms in its execution (𝛼 ∈
(0, 1]). Later in this section, we show how to derive the value of 𝛼
for distributions with sub-exponential and sub-Pareto tails. Observe
that the proposed BL-Moss is a simple extension of Moss and this
algorithm is practically easy to implement. Further, Moss does not
assume any structure on the arrival of suboptimal arms. Thus we
are able to obtain sub-linear regret with minimal assumptions.

Regret Analysis of BL-Moss

For a given BL-MAB instance I, let 𝑗★=argmax𝑖∈𝐾 ( ⌈𝛼𝑇 ⌉) 𝑞𝑖 and
𝑖★ = argmax𝑖∈𝐾 (𝑇 ) 𝑞𝑖 . Clearly, we have that 𝑞𝑖★ ≥ 𝑞 𝑗★ . As stated
earlier, the regret of the algorithm can be decomposed into internal
regret, i.e., the regret incurred by the learning algorithm considering
only ⌈𝛼𝑇 ⌉ arms and external regret, i.e., the regret incurred by BL-
Moss due to the fact that BL-Moss might have ignored the best
arm. Write Δ(𝑖, 𝑗) = 𝑞𝑖 − 𝑞 𝑗 and let 𝑡𝑖 be the time of arrival of
arm 𝑖 . Further, let 𝑖★𝑡 denote the best arm till time 𝑡 . The instance-
dependent regret RBL-Moss (𝑇,I) is given as

P(𝑖★ = 𝑗★)
[ 𝑡 𝑗★−1∑
𝑡=1

Δ(𝑖★𝑡 , 𝑖𝑡 ) +
𝑇∑

𝑡=𝑡 𝑗★

Δ( 𝑗★, 𝑖𝑡 )︸                                  ︷︷                                  ︸
Rint
BL-Moss (𝑇 )

]

+ P(𝑖★ ≠ 𝑗★)
[ 𝑡𝑖★−1∑
𝑡=1

Δ(𝑖★𝑡 , 𝑖𝑡 ) +
𝑇∑

𝑡=𝑡𝑖★

Δ(𝑖★, 𝑖𝑡 )
]

︸                                     ︷︷                                     ︸
Rext
BL-Moss (𝑇 )

The first and the second terms respectively denote the internal
regret and the external regret of BL-Moss. We ignore the ceiling in
⌈𝛼𝑇 ⌉ throughout this section to avoid notation clutter.

Note thatRMoss(𝐿) (𝑇 ) ≤ RMoss(𝐾) (𝑇 ) for all 𝐿 ⊂ 𝐾 . This is true
for any time horizon 𝑇 . From Theorem 4.2, we have the following
observation about the internal regret of BL-Moss.

Observation 1. For the value of 𝛼 computed by BL-Moss , we have
Rint
BL-Moss (𝑇 ) ≤ RMoss (𝛼𝑇 ) (𝑇 ) ≤ 6

√
𝛼𝑇 .

In order to bound the overall regret, we begin with the following
lemma which explicitly shows the relation between the expected
regret of the algorithm and 𝐹𝑋 (·). Recall that the random variable
𝑋 denotes the time of arrival of the best arm.
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Lemma 5.1. The upper bound on the expected regret for any BL-MAB
instance is given byRBL-Moss (𝑇 ) ≤𝑇 (1 − (1 − 6 ·

√
𝛼)𝐹𝑋 (𝛼𝑇 )), with

BL-Moss exploring only the first 𝛼𝑇 arrived arms.

Proof. For a given BL-MAB instance I, let 𝑡𝑖 denote the time
at which arm 𝑖 becomes available for the first time. Let 𝑖★ denote
the best arm till 𝑇 rounds, i.e., 𝑖★ = argmax𝑖∈𝐾 (𝑇 ) 𝑞𝑖 . Further, let
𝑗★ be the best arm among the arms considered by BL-Moss, i.e.,
𝑗★ = argmax𝑗 ∈𝐾 (𝛼𝑇 ) 𝑞𝑖 . Notice that 𝐾 (𝛼𝑇 ) ⊆ 𝐾 (𝑇 ). This implies
𝑞𝑖★ ≥ 𝑞 𝑗★ .

RBL-Moss (𝑇,I) ≤ E
[ 𝛼𝑇∑
𝑡=1

(𝑞 𝑗★ − 𝑞𝑖𝑡 ) +
𝑇∑

𝑡=𝛼𝑇+1
(𝑞𝑖★ − 𝑞𝑖𝑡 )

]
(∵ 𝑞𝑖★ > 𝑞 𝑗★)

= P(𝑖★ = 𝑗★)
[ 𝑇∑
𝑡=1

(𝑞 𝑗★ − 𝑞𝑖𝑡 )
]

+ P(𝑖★ ≠ 𝑗★)
[ 𝛼𝑇∑
𝑡=1

(𝑞 𝑗★ − 𝑞𝑖𝑡 ) +
𝑇∑

𝑡=𝛼𝑇+1
(𝑞𝑖★ − 𝑞𝑖𝑡 )

]
≤ 6P(𝑖★ = 𝑗★)

√
𝛼𝑇 ·𝑇 +

𝑇∑
𝑡=1

(𝑞𝑖★ − 𝑞𝑖𝑡 )P(𝑖★ ≠ 𝑗★)

(From Observation 1 and since 𝑞𝑖★ ≥ 𝑞 𝑗★)
≤ 6𝑇

√
𝛼 · P(𝑖★ = 𝑗★) + P(𝑖★ ≠ 𝑗★)𝑇

(∵
∑𝑇
𝑡=1 (𝑞𝑖★ − 𝑞𝑖𝑡 ) ≤ 𝑇 )

= 6𝑇
√
𝛼 · P(𝑡𝑖★ ≤ 𝛼𝑇 ) + (1 − P(𝑡𝑖★ ≤ 𝛼 ·𝑇 ))𝑇

= 𝑇 (1 − (1 − 6 ·
√
𝛼)P(𝑡𝑖★ ≤ 𝛼𝑇 ))

= 𝑇 (1 − (1 − 6 ·
√
𝛼)𝐹𝑋 (𝛼𝑇 ))

Note that the above inequality holds for any BL-MAB instance and
hence we have RBL-Moss (𝑇 ) = supI RBL-Moss (𝑇,I) ≤ 𝑇 (1 − (1 −
6 ·

√
𝛼)𝐹𝑋 (𝛼𝑇 )). □

Next, we show that under the sub-exponential tail property on𝑋 ,
BL-Moss achieves sub-linear regret. We begin with the following
lemma that lower bounds the probability of the arrival of the best
quality arm in the initial 𝛼𝑇 rounds.

Lemma 5.2. Let the arm arrival distribution of the best arm satisfy
sub-exponential tail property for some 𝜆 > 0. Then for any 𝑐 > 0 and
𝛼 ≥ 𝑊 (𝜆𝑇 /𝑐)

𝜆𝑇 /𝑐 , we have that 𝐹𝑋 (𝛼𝑇 ) > (1 − 𝛼𝑐 ).

Proof. We have that 𝛼 ≥ 𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 =⇒ 𝛼𝜆𝑇

𝑐 ≥𝑊 (𝜆𝑇 /𝑐) =⇒
𝑊

(
𝛼𝜆𝑇
𝑐 ·𝑒𝛼𝜆𝑇 /𝑐

)
≥𝑊 (𝜆𝑇 /𝑐) (by Property P1) =⇒ 𝛼𝜆𝑇

𝑐 ·𝑒𝛼𝜆𝑇 /𝑐 ≥
𝜆𝑇 /𝑐 (by Property P2) =⇒ 𝛼 ≥ 𝑒−𝛼𝜆𝑇 /𝑐 . So, we have 1 − 𝛼𝑐 ≤
1 − 𝑒−𝜆 (𝛼𝑇 ) < 𝐹𝑋 (𝛼𝑇 ). The last inequality follows from the sub-
exponential tail property. □

Theorem 5.3. Let the arrival distribution of the best arm sat-
isfy the sub-exponential tail property for some 𝜆 > 0, and let 𝑇
be large enough such that 𝑇 >

36𝑐 log(36)
𝜆

for some 𝑐 > 0. Then
with 𝛼 =

𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 , the upper bound on the expected regret of BL-

Moss,RBL-Moss (𝑇 ), is𝑂
(
𝑇 ·max

(
𝑒−𝑐𝑊 (𝜆𝑇 /𝑐) , 𝑒−

𝑊 (𝜆𝑇 /𝑐 )
2

) )
. The up-

per bound on the expected regret is minimized when 𝑐 = 1/2 and is
given by 𝑂

(√
𝑇 log(2𝜆𝑇 )

2𝜆

)
.

Proof. From Lemma 5.2, we have 𝐹𝑋 (𝛼𝑇 ) > 1 − 𝛼𝑐 for all
𝛼 ≥ 𝑊 (𝜆𝑇 /𝑐)

𝜆𝑇 /𝑐 . Thus, from Lemma 5.1, we have RBL-Moss (𝑇 ) <

𝑇 (1 − (1 − 6 ·
√
𝛼) (1 − 𝛼𝑐 )).

Note that for achieving sub-linear regret, it is necessary that
(1−6·

√
𝛼) is strictly positive, for which it is necessary that𝛼 < 1/36.

From Lemma 5.2, we also have 𝛼 ≥ 𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 . Since such a feasible

𝛼 may not exist for small values of 𝑇 , we consider that 𝑇 is large
enough. It can be easily shown that 𝑊 (𝜆𝑇 /𝑐)

𝜆𝑇 /𝑐 < 1/36 ⇐⇒ 𝑇 >

36𝑐 log(36)
𝜆

≈ 129𝑐
𝜆

(see Claim 2 in Appendix).

Thus, for 1/36 > 𝛼 ≥ 𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 , we have: RBL-Moss (𝑇 ) < 𝑇 (6 ·

√
𝛼 +𝛼𝑐 − 6 ·𝛼𝑐+1/2). Recall that by definition, we have 𝛼 ≤ 1. Thus

when 𝑐 ∈ (0, 1/2], the term 𝛼𝑐 dominates the other terms in the
regret expression, whereas when 𝑐 > 1/2, the term

√
𝛼 dominates.

We analyze these cases separately.

Case 1 (𝑐 ∈ (0, 1/2]): In this case, the regret is given byRBL-Moss (𝑇 ) =
𝑂 (𝛼𝑐𝑇 ). Note that the regret is minimized for the lowest feasi-
ble value of 𝛼 , i.e., 𝛼 =

𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 , resulting in RBL-Moss (𝑇 ) =

𝑂

(
𝑇
(𝑊 (𝜆𝑇 /𝑐)

𝜆𝑇 /𝑐
)𝑐 )

= 𝑂 (𝑇 · 𝑒−𝑐𝑊 (𝜆𝑇 /𝑐) ). The last equality follows
from the definition of Lambert W function.

Case 2 (𝑐 ∈ [1/2,∞)): In this case, the regret is given byRBL-Moss (𝑇 ) =
𝑂 (

√
𝛼𝑇 ). Again, the regret is minimized when 𝛼 =

𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 . The

regret in this case is given by RBL-Moss (𝑇 ) = 𝑂
(
𝑇 ·

√
𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐

)
=

𝑂
(
𝑇 · 𝑒

−𝑊 (𝜆𝑇 /𝑐 )
2 ).

Further, we have that in Case 1, 𝑒−𝑐𝑊 (𝜆𝑇 /𝑐) > 𝑒
−𝑊 (2𝜆𝑇 )

2 for
any 𝑐 ∈ (0, 1/2) (see Claim 3 in Appendix). For Case 2, we have
from Property P2 that,𝑊 (𝜆𝑇 /𝑐) is decreasing in 𝑐 , which gives us
that 𝑒

−𝑊 (2𝜆𝑇 )
2 < 𝑒

−𝑊 (𝜆𝑇 /𝑐 )
2 for any 𝑐 ∈ (1/2,∞). This shows that

the minimum regret is achieved when 𝑐 = 1/2, and the regret is

given by RBL-Moss (𝑇 ) = 𝑂
(√

𝑇 ·𝑊 (2𝜆𝑇 )
2𝜆

)
= 𝑂

(√
𝑇 log(2𝜆𝑇 )

2𝜆

)
. The

last inequality follows from Property P3, since 2𝜆𝑇 ≥ 𝑒 (∵ 𝑇 >
36𝑐 log(36)

𝜆
where 𝑐 = 1/2). □

We now prove the sub-linear regret of BL-Moss under the sub-
Pareto tail property.

Lemma 5.4. Let the arm arrival distribution of the best arm satisfy
sub-Pareto tail property for some 𝛽 > 0. Then for any 𝑐 > 0 and

𝛼 ≥ 𝑇
−𝛽
𝑐+𝛽 , we have that 𝐹𝑋 (𝛼𝑇 ) > (1 − 𝛼𝑐 ).

Proof. First note that 𝛼 ≥ 𝑇
−𝛽
𝑐+𝛽 ⇐⇒ 𝛼𝑐 ≥ (𝛼𝑇 )−𝛽 . This

implies that (1 − 𝛼𝑐 ) ≤ 1 − (𝛼𝑇 )−𝛽 . Further, from the sub-Pareto
tail property, we have that 1 − (𝛼𝑇 )−𝛽 < 𝐹𝑋 (𝛼𝑇 ). □

Theorem 5.5. Let the arrival distribution of arms satisfy the sub-
Pareto tail property for some 𝛽 > 0, and let 𝑇 be large enough

such that 𝑇 > (36)
𝑐+𝛽
𝛽 for some 𝑐 > 0. Then with 𝛼 = 𝑇

−𝛽
𝛽+𝑐 , the

upper bound on the expected regret of BL-Moss, RBL-Moss (𝑇 ), is
𝑂 (max(𝑇

𝑐+𝛽 (1−𝑐 )
𝑐+𝛽 ,𝑇

2𝑐+𝛽
2(𝑐+𝛽 ) )). The upper bound on the expected regret

is minimized when 𝑐 = 1/2 and is given by 𝑂 (𝑇
1+𝛽
1+2𝛽 ).
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Proof. From Lemmas 5.1 and 5.4, we haveRBL-Moss (𝑇 ) < 𝑇 (1−
(1− 6 ·

√
𝛼) (1−𝛼𝑐 )). For achieving sub-linear regret, it is necessary

that (1 − 6 ·
√
𝛼) is strictly positive. So, we should have 𝛼 < 1/36.

Further, from Lemma 5.4, we have 𝛼 ≥ 𝑇
−𝛽
𝑐+𝛽 . So, for a feasible 𝛼 to

exist, it is necessary that 𝑇
−𝛽
𝑐+𝛽 < 1/36 ⇐⇒ 𝑇 > (36)

𝑐+𝛽
𝛽 , i.e., 𝑇 is

large enough. Thus, for 1/36 > 𝛼 ≥ 𝑇
−𝛽
𝑐+𝛽 , we have RBL-Moss (𝑇 ) <

𝑇 (6 ·
√
𝛼 + 𝛼𝑐 − 6 · 𝛼𝑐+1/2). As earlier, we analyze two cases.

Case 1 (𝑐 ∈ (0, 1/2]): In this case, the regret is given byRBL-Moss (𝑇 ) =
𝑂 (𝛼𝑐𝑇 ). The minimum regret is obtained when 𝛼 = 𝑇

−𝛽
𝛽+𝑐 and is

given by 𝑂 (𝑇 1− 𝑐𝛽

𝑐+𝛽 ).

Case 2 (𝑐 ∈ [1/2,∞)): In this case, the regret is given byRBL-Moss (𝑇 ) =
𝑂 (

√
𝛼𝑇 ). Again, the regret is minimumwhen 𝛼 = 𝑇

−𝛽
𝛽+𝑐 and is given

by 𝑂 (𝑇
2𝑐+𝛽
2(𝑐+𝛽 ) ).

Furthermore, it is easy to see that in Case 1, 𝑇
1+𝛽
1+2𝛽 > 𝑇

𝛽+𝑐 (1−𝛽 )
𝑐+𝛽

for any 𝑐 ∈ (0, 1/2). Similarly, in Case 2,𝑇
1+𝛽
1+2𝛽 > 𝑇

2𝑐+𝛽
2(𝑐+𝛽 ) for any 𝑐 ∈

(1/2,∞). Thus, the minimum regret is achieved when 𝑐 = 1/2. □

Important Observations

We conclude the section with some key observations.

• In the sub-exponential tail case, as 𝜆 → ∞, we have 𝑊 (2𝜆𝑇 )
2𝜆𝑇 → 0.

This implies that the upper bound on the expected regret goes
to 0. Note that in this case, ⌈𝛼𝑇 ⌉ = 1. Since BL-Moss considers a
single arm, the internal regret is zero. Further, we have 𝐹𝑋 (1) → 1,
i.e., the first arm is optimal with probability approaching 1, the
external regret is also zero. As 𝜆 → 0, the tail bounds are trivial
and are satisfied by uniform distribution. From Theorem 3.1, we
have that the regret in this case cannot be sub-linear.

• In the sub-Pareto tail case, following the similar argument as in
the sub-exponential tail case, we have that as 𝛽 → 0, the regret
RBL-Moss (𝑇 ) → 𝑂 (𝑇 ). On the other hand, as 𝛽 → ∞, the regret
goes to 𝑂 (

√
𝑇 ). The larger value of 𝛽 implies that the probability

that the optimal arm arrives by 𝑡 = 2 is close to 1; then we have
that the regret of BL-Moss is asymptotically optimal. Further, it
asymptotically achieves the information theoretic lower bound
(which is 𝑂 (

√
𝑇 )).

• One could also consider UCB1 instead of Moss.While UCB1 is any-
time algorithm,Moss needs the time horizon as an input. However,
the important distinction between the two algorithms is that the
instance-independent regret of UCB1, which is𝑂 (

√
𝑘𝑇 log(𝑇 )), is

greater than that of Moss; hence we use Moss in BL-Moss. One
can similarly use UCB1 to get any-time version of BL-Moss with
slightly more (up to

√
log(𝑇 )) regret guarantee.

6 SIMULATION STUDY

So far, we focused on deriving upper bounds on regret for distribu-
tions (on the arrival time of the best arm) having sub-exponential
and sub-Pareto tail with different values of 𝜆 and 𝛽 , respectively.
In particular, for the case of sub-Pareto tail, we deduced that the
extent of sublinearity of the regret (the exponent of 𝑇 in the order
of the regret) depends on the value of 𝛽 . On the other hand, the
upper bound on regret for the case of sub-exponential tail had the
same order with respect to 𝑇 for any reasonable value of 𝜆, albeit
with different multiplicative and additive terms for different values

of 𝜆. In this section, we aim to illustrate how the expected regret
varies with the time horizon 𝑇 , and how the empirical exponents
compare with their theoretical bounds for different values of 𝛽 and
𝜆, for time horizons up to 106 rounds.

Simulation Setup

Note that in a traditional MAB setup, a simulation for a larger time
horizon 𝑇 ′′ could be conducted as an extension of a simulation for
a smaller time horizon𝑇 ′ < 𝑇 ′′. In other words, after obtaining the
results for time horizon 𝑇 ′, the results for time horizon 𝑇 ′′ can be
obtained by running simulations for an additional 𝑇 ′′ −𝑇 ′ rounds.
However, in the BL-MAB setup where new arms continue arriving
with time and the desired time horizon is known, we have seen that
the optimal value of 𝛼 and hence ⌈𝛼𝑇 ⌉ depend on the time horizon.
Owing to different values of ⌈𝛼𝑇 ⌉ for different time horizons𝑇 , the
simulation for a time horizon𝑇 ′ are not extendable to time horizon
𝑇 ′′ > 𝑇 ′. So even if we have simulation results for time horizon 𝑇 ′,
it is necessary to run a fresh set of simulations for obtaining results
for time horizon 𝑇 ′′ > 𝑇 ′. In our simulation study, we consider
the following values of time horizon: {1, 2, 5, 7} × 104, {1, 2, 5, 7} ×
105, 106.

We consider that a new arm arrives in each round, and the prob-
ability of an arm arriving at time 𝑡 being the best arm is determined
by the distribution function 𝐹𝑋 (𝑡). Thereafter, this best arm (𝑖★) is
assigned a quality (𝑞𝑖★) between 0 and 1 uniformly at random, and
the rest of the arms are assigned quality parameters between 0 and
𝑞𝑖★ uniformly at random. Given a time horizon 𝑇 , the value of 𝛼
and hence ⌈𝛼𝑇 ⌉ are obtained based on our theoretical analysis. The
arm to be pulled in a round is determined by Algorithm 1, wherein
the pulled arm generates unit reward with probability equal to its
quality, and no reward otherwise (i.e., as per Bernoulli distribution).
The regret in each round is computed as the difference between the
quality of the best arm available in that round and the quality of
the pulled arm. The overall regret is the sum of the regrets over all
rounds from 1 till 𝑇 . Note that we are concerned with the regret
irrespective of the numerical values of the arms’ qualities. So, for a
given instance of the arrival of the best arm, we consider the worst-
case regret over 50 sub-instances, where the quality parameters
assigned to the arms in different sub-instances are independent
of each other. Also, since different instances would have the best
arm arriving in different rounds, the expected regret is obtained by
simulating over 1000 such random instances and averaging over
the corresponding worst-case regret values.

Our primary objective is to observe how the expected regret
varies with the time horizon 𝑇 . In order to observe the influence of
various sub-exponential and sub-Pareto tail distributions over the
arrival time of the best arm, we conduct simulations for different
values of parameters 𝜆 and 𝛽 : {0.10, 0.25, 0.50, 0.75, 1, 2, 10}. The
other objective is to determine the empirical exponent of the plots
(i.e., the value of 𝛾 such that the expected regret is approximately
a constant multiple of 𝑇𝛾 ). To achieve this, we first estimate the
constant factor 𝜉 by dividing the expected regret for 𝑇 = 106 by
𝑇𝛾 , for a given value of 𝛾 . We then compute the squared error
when attempting to fit the expected regret with 𝜉𝑇𝛾 . Considering
candidate values of 𝛾 to be between 0 and 1 with intervals of 0.01,
we deduce the empirical exponent to be the value of 𝛾 which results
in the least squared error. We also consider another method for
determining the empirical exponent: we produce the line of best fit
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Figure 1: Simulation results

for the scatter plot of log(𝑇 ) versus the log of the expected regret
for that 𝑇 ; the slope of this line gives the empirical exponent. The
empirical exponents obtained using the two methods are almost
identical (differing by less than 0.01).

Simulation Results

As mentioned at the end of our theoretical analysis, for the sub-
exponential tail case when 𝜆 → ∞, the upper bound on the expected
regret goes to 0. In our simulations with the maximum observed
time horizon of 106, the expected regret was observed to be uni-
formly zero, even for 𝜆 = 10 (see Figure 1(a)). Further, for other
considered values of 𝜆, the plots exhibit a prominent sub-linear na-
ture. In particular, considering the maximum observed time horizon
of 106, the empirical exponents for different values of 𝜆 were con-
sistently observed to be between 0.45 and 0.5 (Theorem 5.3 showed
the order of the regret with respect to 𝑇 , for reasonable values of 𝜆,
to be bounded by

√
𝑇 log(𝑇 ), which is an exponent close to 0.5).

For the sub-Pareto tail case illustrated in Figure 1(b), note that
we have no result for 𝛽 = 0.10 because the value of𝑇 for obtaining a
feasible𝛼 should be greater than 366, which is beyond ourmaximum
observed time horizon of 106. Moreover, we have partial results for
𝛽 = 0.25 because the value of 𝑇 for obtaining a feasible 𝛼 should
be greater than 363; so the plot starts with 𝑇 = 0.5 × 105. It can
be seen, in general, that the plots in Figure 1(b) follow a far less
sub-linear nature and exhibit a much higher expected regret than
those in Figure 1(a). This is intuitive from our analysis that the sub-
exponential tail case is likely to result in a much lower regret than
the sub-Pareto tail case. In particular, the empirical exponent for 𝛽 =

0.25 was deduced to be 0.8, which is close to linear (its theoretical
upper bound as per our analysis is 0.83). In general, considering the
maximum observed time horizon of 106, it can be seen from Figure
1(c) that the upper bound on the theoretical exponent (which is
1+𝛽
1+2𝛽 from Theorem 5.5) and the empirical exponent are close to
each other.

Note that the gap between the empirical exponents and the
corresponding theoretical upper bounds could be attributed to the
fact that it is difficult to find the worst-case distribution over the
reward parameters of the arms. Hence, it is unlikely that the worst-
case (or instance-independent) expected regret could be attained in
the simulations with a random reward structure. Since the gap is

not very significant, the simulation results suggest that the bounds
derived in our regret analysis of BL-Moss (in Section 5) are, in all
probability, tight.

Additional Notes on Simulations

It is to be noted that our theoretical analysis holds for any arbitrary
time horizon as long as the time horizon is known to BL-Moss. In
our simulations, we considered time horizons up to 106 for compu-
tational reasons. The expected regret for a given arrival distribution
of the best arm is computed using 50000 random instances (by aver-
aging over 1000 instances for different arrival times of the best arm,
where in each instance, the worst case is taken over 50 sub-instances
for different quality parameters). In practice, as only one instance
is realized, the computational overhead is not an impediment in
the real world applicability of the proposed algorithm.

Note also that the standard MAB algorithms (e.g., the UCB fam-
ily) which are oblivious to the structure on the arrival of arms,
would incur linear regret. Also, since these algorithms explore each
incoming arm at least once, they would incur linear regret even
with sub-exponential or sub-Pareto assumption, when the number
of arms grows linearly with time. Our simulations aimed to observe
the order of sublinearity of regret (exponent of 𝑇 ). Since existing
algorithms would give linear regret, the exponent of𝑇 is trivially 1.

7 ADDITIONAL RELATEDWORK

A standard stochastic MAB framework considers that the number
of available arms is fixed (say 𝑘) and typically much less than the
time horizon (say 𝑇 ). In the seminal work of Lai and Robbins [21],
the authors showed that any MAB algorithm in such a setting must
incur a regret of Ω( log𝑇

𝐷KL
) where 𝐷KL is the Kullback-Leibler di-

vergence between the best arm and the second best arm. Auer [4]
proposed the UCB1 algorithm which attains a matching upper
bound on the expected regret. However, the instance-independent
(i.e., in adversarial case) regret of the variant of UCB1, (𝛼,𝜓 )-UCB,
is given by 𝑂 (

√
𝑘𝑇 log𝑇 ) [10]. The Moss algorithm proposed by

Audibert and Bubeck [3] achieves the instance-independent regret
of𝑂 (

√
𝑘𝑇 ). Bubeck and Cesa-Bianchi [10] present a detailed survey

on regret bounds of these algorithms. A similar setting, known as
arm-acquiring bandits is studied under Markovian bandits frame-
work [24, 32]. Here, the goal is to maximize the discounted, infinite
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time cumulative reward whereas in ballooning bandits goal is to
minimize the finite time cumulative regret. This difference is fur-
ther highlighted by the fact that ballooning bandits is a learning
problem whereas arm-acquiring bandits is a planning problem.

The problem of learning qualities of the answers on Q&A fo-
rums was first modeled under MAB framework by Ghosh and
Hummel [17] where generation of a new arm was considered as
a consequence of strategic choice of an agent. Though this model
captures strategic aspects of the contributors, there is an important
practical issue with such modelling. Each agent, being a strategic
attention seeker, is assumed to produce the effort just enough to
satisfy incentive compatibility in the equilibrium.We do not assume
an efforts-and-costs model and show that, even when the number
of answers grows linearly with time if the qualities of arriving an-
swers follow certain mild distributional assumption, the proposed
algorithm achieves sub-linear regret. Tang and Ho [28] consider a
model with fixed number of arms but with a platform where agents
provide biased feedback. On such Q&A forums, it is more relevant
to consider the problem with increasing number of arms. A recent
work by Liu and Ho [22] limits the growth of the bandit arms by
randomly dropping some arms from consideration, and computing
the regret with respect to only the considered arms. They do not
account for the regret incurred due to the randomly dropped arms.

8 DISCUSSION AND FUTUREWORK

In this paper, we presented Ballooning bandits model (BL-MAB)
and showed that, in the absence of any distributional assumption
on the arrival of the best quality arm, it is impossible to achieve
sub-linear regret. We proposed an algorithm for the BL-MABmodel
and provided sufficient conditions under which the proposed al-
gorithm achieves sub-linear regret. In particular, when the arrival
distribution of the best quality arm has a sub-exponential or sub-
Pareto tail, our algorithm BL-Moss achieves sub-linear regret by
restricting the number of arms to be explored in an intelligent way.

Our results indicate that, the number of arms to be explored de-
pends on the distributional parameters, namely, 𝜆 (for sub-exponential
case) and 𝛽 (for sub-Pareto case), which must be known to the al-
gorithm. It will be interesting to see how a learning algorithm can
be designed to learn these parameters as well. For the worst case
analysis, we considered that a new arm arrives at every time in-
stant (similar to [17, 22]), hence the number of arms equals the time
horizon𝑇 . The case where the number of arms is

√
𝑇 or log(𝑇 ) can

be easily analyzed using a sleeping bandit algorithm, and sublinear
regret can be achieved. With additional distributional assumptions
on the best arm’s arrival, the regret will be correspondingly lower;
analyzing this regret bound is an interesting future direction. In
this paper, we only consider a structure on the arrival of the best
arm. One could also consider a more sophisticated arrival process
of the arms, for obtaining better regret guarantees.

APPENDIX

Claim1. For a given BL-MAB instanceI, minimum regret is achieved
when algorithm pulls the first |𝐺 | arms.

Proof. We prove the result by contradiction. Without loss of
generality, let |𝐺 | ≠ 0 and |𝐺 | ≠ 𝑇 (since the result is trivially true
in both the cases). Let an optimal algorithm pull the set of arms 𝐺
in its execution and that there is atleast one arm pulled after |𝐺 |

time instants. For contradiction, assume that the achieved regret
is strictly less than when the algorithm pulls the first |𝐺 | arms. As
𝐺 is not the set of first |𝐺 | arms, there exists an arm 𝑖 such that
𝑖 ∉ 𝐺 and 𝑖 ≤ |𝐺 |. Also, there exists a corresponding arm 𝑗 such
that 𝑗 ∈ 𝐺 and 𝑗 > |𝐺 |. Consider all such (𝑖, 𝑗) pairs and construct a
set𝐺

′
= 𝐺 ∪ {𝑖} \ { 𝑗} by swapping the arm 𝑗 with arm 𝑖 . Whenever

an arm 𝑗 ∈ 𝐺 is pulled by the algorithm, we make a pull of the
corresponding arm 𝑖 ∈ 𝐺 ′

. We now prove that the expected regret
guarantee with 𝐺 and 𝐺

′
is the same. Let,

Δ(𝑖★𝑡 , 𝑖𝑡 ) =
{
𝜀 if 𝑖★𝑡 = 𝑖★ and 𝑖𝑡 ≠ 𝑖★𝑡
0 otherwise.

Here, 𝑖★𝑡 is the highest quality arm available at time 𝑡 . In the given
example in the main text, we have 𝑞𝑖★𝑡 = 1/2 + 𝜀 if the best arm 𝑖★

has arrived on or before time instant 𝑡 , otherwise 𝑞𝑖★𝑡 = 1/2. Note
that, as the best arm is uniformly distributed, both 𝑖 and 𝑗 have
equal probability of being an optimal arm. Hence, the expected
𝑡-time regret
E𝐺 [Δ(𝑖★𝑡 , 𝑖𝑡 )] = 𝜀 ·P(𝑖𝑡 ≠ 𝑖★𝑡 , 𝑖★𝑡 = 𝑖★)

= 𝜀 ·P(𝑖𝑡 ≠ 𝑖★𝑡 |𝑖★𝑡 = 𝑖★) ·P(𝑖★𝑡 = 𝑖★)

= 𝜀 ·P(𝑖★𝑡 = 𝑖★)
∑
𝑗 ∈𝐺

1(𝑖𝑡 = 𝑗)P( 𝑗 ≠ 𝑖★𝑡 |𝑖★𝑡 = 𝑖★)

= 𝜀 ·P(𝑖★𝑡 = 𝑖★)
∑
𝑖∈𝐺′

1(𝑖𝑡 = 𝑖)P(𝑖 ≠ 𝑖★𝑡 |𝑖★𝑡 = 𝑖★)

= E𝐺′ [Δ(𝑖★𝑡 , 𝑖𝑡 )]
Note that the above equality holds for any time instant 𝑡 . This con-
tradicts the assumption thatE𝐺 [∑𝑇𝑡=1 Δ(𝑖★𝑡 , 𝑖𝑡 )] <E𝐺′ [∑𝑇𝑡=1 Δ(𝑖★𝑡 , 𝑖𝑡 )].
This completes the proof. □

Claim 2.
𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 < 1/36 ⇐⇒ 𝑇 >

36𝑐 log(36)
𝜆

Proof. We have the following equivalent inequalities.
𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 <

1
36

⇐⇒ 𝑒−𝑊 (𝜆𝑇 /𝑐) <
1
36

(∵𝑊 (𝑥)𝑒𝑊 (𝑥) =𝑥)

⇐⇒𝑊 (𝜆𝑇 /𝑐) > log(36) ⇐⇒ 𝜆𝑇

𝑐
> log(36)𝑒 log(36)

⇐⇒ 𝑇 >
36𝑐 log(36)

𝜆

The second to last inequality is obtained by applying the monotone
increasing function 𝑓 (𝑥) := 𝑥𝑒𝑥 on both sides, and then using
Definition 4.1 of Lambert𝑊 function. □

Claim 3. 𝑒−𝑐𝑊 (𝜆𝑇 /𝑐) is decreasing in 𝑐 for 𝑐 ∈ (0, 1/2].

Proof. For 𝑐1 > 𝑐 , we have
𝜆𝑇 /𝑐 > 𝜆𝑇 /𝑐1

⇐⇒𝑊 (𝜆𝑇 /𝑐) >𝑊 (𝜆𝑇 /𝑐1) (Property P2 of Lambert𝑊 )

⇐⇒ 𝑒−𝑊 (𝜆𝑇 /𝑐) < 𝑒−𝑊 (𝜆𝑇 /𝑐1)

⇐⇒ 𝑊 (𝜆𝑇 /𝑐)
𝜆𝑇 /𝑐 <

𝑊 (𝜆𝑇 /𝑐1)
𝜆𝑇 /𝑐1

(∵𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥)

⇐⇒ 𝑐𝑊 (𝜆𝑇 /𝑐) < 𝑐1𝑊 (𝜆𝑇 /𝑐1)

⇐⇒ 𝑒−𝑐𝑊 (𝜆𝑇 /𝑐) > 𝑒−𝑐1𝑊 (𝜆𝑇 /𝑐1)

□
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