Reinforcement Learning for Train Movement Planning at
Railway Stations
Adaptive and Learning Agents Workshop 2020

Shripad Salsingikar
Indian Institute of Technology Bombay
Powai, Mumbai, India
TCS Research, Tata Consultancy Services
Thane, India
shripad.salsingikar@tcs.com

ABSTRACT

Train movement planning at a railway station involves assigning
platforms to trains, finding traversal paths for trains entering or
leaving through the station network, and scheduling train entry,
exit, or reversal activities. Trains use railway tracks at the station
for traversing through the station. The planning of train move-
ments becomes challenging as a large number of decisions are
involved, due to a large number of interconnected tracks at the
station. Even for a small station, the problem is interesting due to
some peculiar constraints and conditions. We develop a reinforce-
ment learning-based approach to generate a train movement plan
at the station. We consider route-lock route-release as operating
policy, shunting/reversal activities, and route dependent run time
while modeling the problem. The reinforcement learning algorithm
learns best heuristics, which is used for planning train movements
under different inter-arrival times between trains. In this paper, we
demonstrate how this approach can be used to analyze the impact
of inter-arrival time between trains on delay acquired by trains
while traversing through a terminal station. We also demonstrate
how this approach can be used to analyze the operating capacity of
the terminal station and to learn heuristics for generating the train
movement plan. We compare the results obtained by the heuristics
learned by the reinforcement learning approach with the heuristics
used in practice. We found that the heuristics learned by the rein-
forcement learning approach perform better in congested scenario
compared to that being used in practice. Data instance used for
the case study includes a small terminal station extracted from the
Indian Railways network.

KEYWORDS

Reinforcement Learning; Train Planning; Junction Planning

1 INTRODUCTION

A station in a railway network is a place with multiple parallel
tracks, which facilitate embarking and disembarking of passengers
or loading and unloading of goods or both. A terminal is generally at
the end of a railway line where the railway tracks end. It is a station
at which trains can enter and leave in only one direction. Thus
train reversal activities must be performed in railway terminals.
A railway station consists of interconnected track resources
such as loops, interchanges, switches, and cross-overs along with
platforms. A station handles train movements (arrival, halt, and

Narayan Rangaraj
Indian Institute of Technology Bombay
Powai, Mumbai, India
narayan.rangaraj@iitb.ac.in

—(1 >
[&
2
1
< 127
- "
J
Entry Signal Inbound path === Outbound path
@ Exit Signal < Route
@ Halt Signal == Track Elements [1-2, 2-3, 3-4]

Figure 1: Station Schematic Layout

departure), train reversal, and shunting movements as part of reg-
ular train operations. The shunting activities include movement
of rolling stock (coaches, wagons) for sorting and creating new
trains. Figure 1 gives a schematic layout of a typical railway station.
A large railway station handles significant train movements that
use track resources available at the station. These significant train
movements and interconnected track resources cause hindrance in
train movement, which leads to delays. Often, in a railway network,
a large railway station is a cause of delay in the system.

Train movement planning finds a conflict-free path for each train
traversing through the station such that operational and safety re-
quirements are satisfied, planned train movements are carried out
smoothly, and overall delays are minimized. It includes schedul-
ing trains, finding traversal paths for trains through the station
network, assigning tracks and platforms to trains, and planning
local reversal and shunting activities, if any. The outcome is rep-
resented as occupation start time and end time for each train for
each allocated track element in the station. Key decisions involve
determining a route for each train (a sequence of track elements
visited by each train), determining track elements to be allocated to
each train, time intervals for which track elements will be occupied
by each train [14]. Planning of these activities at a railway station
is challenging, especially in the situation of congestion, due to the
number of decisions involved, details of infrastructure to be con-
sidered, and operational rules constraining the passage of trains
through track sections [7].

Infrastructure details are defined in terms of track elements
between signals/switches. The interconnection of track elements
forms a railway network, and the sequence of track elements forms
a path. A route is a path which a train traverses in the station. The
origin of the path is the entry point of a train. The destination of
the path is the exit point of a train. Please refer Figure 1 for details.
Track elements at the station would be small in length, and a train
may occupy more than one track element at a time.

Each train is defined in terms of an entry point and exit point
at the station, scheduled arrival time at the entry point, scheduled
departure time from the halt signal (i.e., the platform) at the station,
and minimum halt time at the station. A set of trains and related
activities (traversal, reversal) at the station are assumed to be known
in advance.

For safety reasons, trains cannot move faster than the maxi-
mum permissible speed of the track elements, especially at cross-
ings/switches. No infrastructure element is allowed to be allotted
to two different trains at the same time. The traffic approaching
towards already occupied tracks from other connected tracks is
blocked. Minimum time between two trains must be maintained
when they occupy the same resource consecutively.

How a train traverses through a station network depends on
the underlying interlocking system and related constraints. These
constraints decide how tracks are reserved ahead and released
later during traversal of the train through the station. In route-lock
route-release interlocking setting, all path elements for a train are
reserved simultaneously, and all path elements other than the last
element (platform or halt edge) are released simultaneously when
the train reaches the last element. The other setting are route-lock
sectional-release and sectional-lock sectional-release [20].

In this paper, we present a Reinforcement Learning (RL) based
approach for developing heuristics, which are then used to create
an operational train movement plan for a station. The output of the
RL approach is operating heuristics similar to the heuristics used by
the planners in real-life operations. We present a case study where
we use the proposed RL algorithm to plan the train movements for
a real-world instance extracted from the Indian Railways network.
We analyze the impact of inter-arrival time between trains on train
movements through the station. The inter-arrival time is the time
between two consecutive trains entering the terminal. In this paper,
it is the minimum time gap, after which the next train can enter the
terminal. We report key performance parameters such as acquired
delay, entry delay, a suitable range of inter-arrival time between
trains for operations, and utilization of bottleneck resources. We
compare the train movement plan developed using the proposed RL
approach and the train movement plan developed using operational
heuristics used in practice.

The outline of this paper is as follows. Section 2 presents a brief
literature review. Section 3 describes the approach in detail. Section
4 presents a case study, where the proposed approach is applied to
a realistic railway network, followed by conclusion in Section 5.

2 PREVIOUS WORK

The railway scheduling problem is a variant of job shop scheduling
problem with blocking and no-wait constraints [9], where a track
corresponds to a machine, and a train corresponds to a job. A train

must wait at the current track unless the next track is freed, which
makes tracks as machines with no-store / no buffer. The railway
scheduling problem is the NP-Complete problem [1]; thus, various
approaches are presented in the literature to solve this problem.
The solution approaches for the railway scheduling problem can be
classified into three types, namely (Meta) Heuristic, Analytical, and
Simulation [8]. Recently machine learning approaches are being
applied.

In the railway station planning problem, the underlying network
is limited to the vicinity of a railway station. The characteristics
of the railway station planning problem include dense train traffic,
many smaller track elements interconnected with each, smaller
planning horizon. The authors consider both tactical as well as
operational settings while solving the problem. In tactical settings,
planning is done well ahead of the implementation of the plan
(timetable generation). In operational settings, planning is done
close to the implementation of the plan (dispatching or operational
rescheduling). In tactical settings, the sub-problems such as schedul-
ing, routing, platforming, shunting are solved, either separately or
in an integrated manner. Caprara et al. [3], [4] have studied routing
and platforming problem separately, whereas Carey et.al. [5] and
Dewilde et.al. [11] have studied the integrated scheduling, routing
and platforming problem. Chakroborty [6] gives MILP model for
platform allocation for an India railway instance. Most of the papers
model railway infrastructure at the mesoscopic level. Lusby et al.
[18] give a detailed review of approaches used for tactical problems.
All the above authors have used exact optimization methods as they
considered tactical settings.

In the operational settings, the research on real-time routing and
platforming in railway junctions has gained importance recently
with the emphasis on using exact optimization methods. The re-
ported papers in the literature differ in the granularity at which
the infrastructure is modeled, speed of trains considered (fixed or
variable), routing (fixed, changing), planning horizon considered.
Dessouky et al. [10], Térnquist et al. [25] and D’Ariano et al. [9]
model the railway infrastructure at some higher level of granularity
and use fixed routes and fixed speed for trains. Rodriguez et al. [21],
Lusby et al. [19] model detailed level of infrastructure, in terms of
track circuits and uses variable speed for trains. Caimi et al. [2]
model the microscopic network details and use a fixed speed model.
Fang et al. [13] give a review of rescheduling approaches.

Some of the recent papers in railway rescheduling at station
report on analysis of various operating policies followed at the
junction. Corman et al. [7] considers an interlocking system and
compares route-lock route-release and section-lock section-release
policies by keeping the routes of the trains unchanged. Pellegrini
et al. [20] compare interlocking settings with changing the routes
and found that route-lock section-release gives better results when
trains travel along only partially coincident routes. In both the
above studies, the speed of trains is assumed to be constant, and
both use the exact optimization approach to solve the problem.

Recent papers apply the machine learning approach for railway
scheduling. Hirashima [15] presents a reinforcement learning ap-
proach for planning train marshaling within yards. Diindar et al.
[12] use supervised learning for mimicking human controllers but
is limited to conflict resolution. Khadilkar et al. [17] present a su-
pervised learning approach that learns from the solutions obtained

using a mixed-integer linear programming approach on small data
instances. They derive a set of rules using decision trees and ap-
ply the scheduling rules to large test instances. Semrov et al. [26]
present reinforcement learning for railway scheduling. They use a
Q-learning approach with the focus on recovery from initial delays.
Khadilkar [16] presents an algorithm for scheduling bi-directional
railway lines (both single- and multi-track) using a reinforcement
learning approach used for timetable generation. This approach can
scale to large, realistic, single- and multi-track instances of railway
scheduling.

The problem studied in this paper is similar to that studied in
Corman et al. [7] and Pellegrini el al [20], except that both au-
thors study the problem in rescheduling settings, whereas we use
timetabling settings. Both above authors [7] and Pellegrini el al [20]
approximate the problem by fixing some of the variables and limits
the planning horizon or consider rolling time horizon approaches.
We consider a more generic setting by not fixing any variable or
limiting the planning horizon.

This paper describes a reinforcement learning approach, which
produces results better than heuristic approaches using relatively
low computation times. The approach belongs to a class of rein-
forcement learning algorithms known as table-based Q-learning
[7]. To our best knowledge, this is the first paper that uses reinforce-
ment learning for solving train movement planning at a railway
station. Both Semrov et al. [26] and Khadilkar et al. [16] present
an RL approach applicable to a long-distance railway line and not
for the small area network like as a railway station. Both consider
train occupancy at a block section as the state space, but here in the
case of the station network, the block section is not clearly defined.
At a station, a block section may not be the tracks between two
signals. Thus, train occupancy by path need to be considered, and
a path may have multiple signals or even no signal in two paths
combined. This paper explicitly models a) route-lock route-release
as interlocking setting, b) local shunting/reversal activities, and c)
route dependent run time, which otherwise is not considered in the
literature. This paper describes how reinforcement learning is used
to learn heuristics automatically, which helps generate the sched-
ule. This paper presents a computational experiment to prove the
suitability of the proposed approach for determining the carrying
capacity of the station, and to generate a timetable for trains in the
station.

3 METHODOLOGY

This section describes details of the proposed reinforcement learn-
ing approach to generate the train movement plan at a station.
We model the station network as a network of connected track re-
sources; take expected arrival time of each train visiting the station
in the given planning horizon along with its entry signal point and
exit signal point in the network as input; and plan train movements
through the station by considering train routing along all possible
routes in the station; Moreover, find a conflict-free path for each
train through the station by using the proposed RL approach.

The output is the operating schedule of the trains at the station,
i.e., the best routing option and a feasible schedule for all trains
under consideration, along with other key performance parameters
such as entry delay, acquired delay, and resource utilization.

We first describe how infrastructure, train movements are mod-
eled, and then the details of the reinforcement learning model
developed.

3.1 Station Network and Train Movement
Modeling

A railway station network consists of small interconnected ele-
ments like signals, crossings, and track segments. Figure 1 gives a
schematic layout of a typical railway station. It explains concepts
like track element, node/signal, inbound path, outbound path, route.
A route is a traversal path for a train in the station. A route has an
entry point as the origin and an exit point as destination. Please
refer Figure 1 for details. An Inbound path is between an entry point
signal and a halt signal, whereas an outbound path is between a
halt signal and an exit point signal.

For this study, we model the track infrastructure of the station at
the microscopic level. We represent station network as a directed
graph with edges representing track elements and nodes represent-
ing signals or start/end of track elements. A node is characterized
by a name, node type (signal/crossing), and the direction of traffic
allowed through that node. The signal node is classified as entry,
exit, halt, intermediate, and station signal. An arc is characterized
by from-node, to-node, length of the arc/track, speed limit while
traversing through the arc, arc type (regular or crossing), and di-
rection of traffic allowed through the arc. An arc is a directed arc
representing the allowed direction for the train traffic.

We obtain all possible routes between all pairs of entry signals
and exit signals (in the directed graph shown in Figure 1), using
the ’depth-first graph traversal’ algorithm. There may be multiple
routes possible between a given entry-signal and a given exit-signal.
We discard all routes with user-defined conflicting links between
entry node and exit node and route with no halt signals. Further,
each route is broken into two paths, the inbound path, and the
outbound path. An inbound path is between an entry signal and a
halt signal, whereas an outbound path is between a halt signal and
an exit signal.

Each train is defined by train name, entry point, exit point, ex-
pected arrival time at the entry point, entry speed, length, accelera-
tion, deceleration, minimum halt time, and if it requires a reversal
or not.

We assume that trains are running at a constant speed, but we
model different speeds for different paths and routes of trains. We
calculate all the possible routes which a train may take in the station.
Further, we assume route-lock route-release as the interlocking
setting, and we model the train traversal accordingly.

3.2 Reinforcement Learning model

State-Space representation The railway track network at the
station is represented using paths and platform tracks, as shown in
Figure 1. At a station, let ’N'S’ be the number of entry signals (i.e.,
locations from which trains can enter the station or station), ’PI’
be the number of inbound paths (i.e., paths from entry signals to
platforms or halt signals), ’PO’ be the number of outbound paths
(i-e., paths from platforms or halt signals to exit signals) and "HS’
be the number of halt signals, which also represents the number of
platforms at the station.

INL [IN1 IN2 PF1 PF2 OT1 OT2 | IN1 IN2 PF1 PF2 i OT1 OT1
NS Pl HS PO Pl HS PO

Ready Track being Occupied Completed Min Occupation Time

Grp 1 Group 2 Group 3

Figure 2: State space representation

A state vector contains three types of entries, and all entries are
binary; see Figure 2 for details. The first group of entries indicates
whether a train is ready to enter the station at an entry signal. The
length of this part is equal to NS. The value 1 indicates that a train
is ready to enter the station, 0 if not.

The second group of entries represents if tracks (paths or plat-
forms) are occupied or not. The length of this part is equal to the
sum of PI, HS, and PO. This group has three subparts. First, PI
entries represent occupancy of inbound paths, the next HS entries
represent occupancy of platforms and the next PO entries represent
occupancy of outbound paths. 1 represents that a path is occupied,
0 otherwise.

The third group of entries represents if train occupying respec-
tive tracks completed its minimum occupation time (defined by
minimum run-time or minimum halt-time of a train) Moreover,
that tracks are ready to be released. The length of this part is equal
to the sum of PI, HS, and PO. This group has three subparts where
the first PI entries represent release readiness of inbound paths,
the next HS entries represent release readiness of platform, and the
next PO entries represent release readiness of outbound paths. One
represents that a path is ready for release, Zero otherwise. Please
note that a path or a platform can still be occupied by a train, even
its minimum occupation time is over, and it represents delay.

Action and Policy representation A train in the station tra-
verses through a set of tack resources in a specified order. A train
enters the station via an entry signal, accesses inbound path, halts
at a platform, and exists the station using an outbound path via an
exit signal. In this study, we represent which track resources (path
or platform) will be occupied next by the train as an action for a
given state vector. The action represents traversal of trains from
one resource to another. The transition from an inbound path to a
platform is an action. The transition from a platform to an outbound
path is an action. For example, if a train is ready to enter the station
and no other train is present in the station, then the train has to
choose one of the inbound paths, this choice is an action in this
study. The action space depends on the underlying station network
and consists of a set of inbound paths, platforms, outbound paths,
and exit signals. For simplicity and clarity, we define an action as a
combination of the previous and the next resource.

For many states, only one action is possible, whereas, for a few
states, multiple actions are possible. The RL procedure maps each
state vector to a probability of choosing the action to be taken. The
final goal is to identify one best action for each possible state vector
for a given infrastructure. This set of state-action pairs, which is
expected to gives the best result, is referred as policy.

Objectives, Rewards, and Q-Values For this study, we use the
objectives of minimizing the make-span (i.e., the difference between
the departure of the last train and the arrival of the first train). To

make the learning fast, we do not directly use the make-span as
the (negative) reward at the end of the episode, However, we use a
reward system given in [16]. The algorithm maintains a threshold
of J as the goal to be achieved in each episode.] is the average of
objective values of last p episodes, where p > 0 and is a user-defined
parameter. The threshold becomes tighter as the best known J is
improved upon during learning. A reward of +1 (success) is given
if the make-span at the end of the episode is under the current
threshold, and -1 (failure) if it is over the threshold.

Reinforcement Learning Algorithm We get a set of unique
state-action pairs from a state vector and its associated actions.
Each state-action pair (s, a) is associated with a Q-Value q(s, a).
The higher the Q-Value, the higher the desirability of the relevant
pair.

For this study, we use e-soft On-Policy First Visit Monte Carlo
Control algorithm, which is adapted from [24]. The On-Policy
Monte Carlo algorithm aims to shift the policy toward a determin-
istic optimal policy. In e-soft policy most of the time, we choose an
action that has maximal estimated action Q-value. With probability
€, we instead select an action at random from the available/possible
actions. We start with a random policy where we choose one action
randomly for each state-action pair. The policy chooses the greedy
option (higher Q-Value) with probability (1-€), and a randomized
action with probability €. The value of € starts at 1 in the first train-
ing episode and decreases as more episodes are completed. This
gradual decrease in € moves the policy gradually from exploration
towards exploitation.

In each episode, we track only pairs belonging to states where
multiple actions are possible and not the entire sequence of state-
action pairs. The rewards received at the end of the episode are
discounted, using a discounting factor y as per the first-visit policy
given in [24]. We use table-based Q-Learning, i.e., Q-value for each
state-action is store in a table.

4 CASE STUDY

This section presents a case study and experiments performed on a
real-life small terminal station extracted from the Indian Railways
network. The traffic and complexity of this instance are nearly the
same as happens in real life. We have used a small terminal station
for this case study. There exist medium to very complex station
network layouts in practice as given in [22], [23], [7], and [20]. The
proposed approach with some modification is also applicable to
these bigger station networks.

We use the RL approach described in section 3 to develop heuris-
tics, which are used for developing an operational train movement
plan for a station. These heuristics are similar to the ones used by
planners/users in real-life operations.

The experiment demonstrates how the proposed RL approach
can be used for determining a timetable for the trains running in the
system. The experiment also demonstrates the impact of various
headway values (time between two consecutive trains entering
the terminal) on the overall delay, which in turn determines the
capacity of the terminal station. Delay includes delay acquired by
trains in the system as well as delay experienced by trains at the
entry of the system.

250 1m0 a0
SN NI, /w2 04
/110
80 10 a0
sou N1 01 w03

Figure 3: CSMT Harbour terminal scissor layout

Table 1: Runtime data for scissor layout

Route- | Edges Runtime Total
Path (sec) (sec)
R1-P1 SIN - N12 - S01 - S03 40 - 25 - 095 160
R1-P2 | S03-S01-N11-SOU | 25-10- 045 80

R2-P3 | SIN-N12-S02-S04 | 35-10-035 80
R2-P4 | S04-S02-N11-SOU | 55-25-100 180

4.1 Terminal Network Layout

The Chatrapati Shivaji Maharaj Terminal (CSMT) - Harbour is
used as an illustrative example. It is the starting/terminal station
of Harbour commuting local line in Mumbai, operated by Central
Railway of Indian Railways and is a conventional double line.

CSMT Harbour terminal has a simple network layout with some
peculiar settings, which makes it interesting for study. Due to the
network layout of the terminal, the travel time of a train depends
on which route train takes in the terminal, and thus, the minimum
time between two consecutive trains is not always the same. Al-
though the minimum time between every alternate train entering
the terminal is the same, the minimum time between two consecu-
tive trains entering one after each other in the terminal does not
remain the same.

Figure 3 gives layout of CSMT Harbour terminal. The length of
the arc (in meter) is shown just above the arc. The thick end of an
arc represents the direction of traffic allowed on that arc. Nodes
starting with ’S’ are signals, whereas that with N” are crossings.

The CSMT Harbour terminal has only two terminating lines.
These two lines are interconnected with each other at the start of
the terminal for facilitating train reversal movement. A train enters
the terminal using the UP line (SIN signal) and leaves the terminal
using the DOWN line (SOU signal). The crossing is involved when
trains enter or exit the station, depending on the line selected for
trains for halting and reversing.

There exist four paths and two routes in this terminal. Table
1 gives the list of possible paths and corresponding run-time for
each path in the terminal. The traversal time is pre-calculated using
standard motion equations taking entry speed, speed-limit at tracks,
acceleration, deceleration of train. The arc N12-S01 connects Entry-
Signal SIN and Platform S01-S03 in up direction and is in path P1.
The arc S02-N11 connects Platform S02-S04 and Exit-Signal SOU
in the down direction and is in path P4. These two arcs cross each
other physically. Route R1 consists of path P1, path P2, platform
S01-S03, and arc N12-S01. Route R2 consists of path P3, path P4,
platform S02-S04, and arc S02-N11.

Please note that traversal time for route R1 is less than that of
route R2. This difference is because tracks after the crossing have
the right curvature.

4.2 Experiment setup

State space: For the network layout given in Figure 3, the state
space vector is defined as given in section 3.2. The layout consists
of two inbound paths, two outbound paths, two platforms, and one
entry signal. The length of the state-space vector is 13. The length
of the first group representing entry points is 1. The length of the
second group representing train occupancy of paths/tracks is 6. The
length of the third group representing readiness of train leaving
paths/tracks is 6. Figure 2 illustrates the state space representation
for this case study.

The state-space vector can be represented as a string "A-BCDEFG-
HIJKLM," where each element is binary. The value of A is 1 if
any train is ready to enter the terminal from signal SIN, else 0. B
and C represent if inbound-path1 and inbound-path2 are occupied,
respectively. If a path is occupied, the respective variable (B and C)
gets value 1, else 0. D and E represent if platform1 and platform2
are occupied, respectively. If a platform is occupied, the respective
variable (D and E) gets value 1, else 0. F and G represent if outbound-
pathl and outbound-path2 are occupied, respectively. If a path is
occupied, the respective variable (F and G) gets value 1, else 0.

H and I represent if inbound-path1 and inbound-path2 are ready
to release, respectively. When the train occupying respective in-
bound path, completes minimum time for occupation (defined as
per train’s run time on that path), respective variable (H and I) gets
value 1, else 0. J and K represent if trains occupying platform1 and
platform? are ready to release the respective platform. When the
train occupying the respective platform, completes minimum time
for occupation (defined as per train’s halt time at the terminal),
respective variable (J and K) gets value 1, else 0. L and M repre-
sent if outbound-path1 and outbound-path2 are ready to release,
respectively. When the train occupying respective outbound path,
completes minimum time for occupation (as per train’s run time
on that path), respective variable (L and M) gets value 1, else 0.
Action Space: Some example of actions are given here. NONIN1
- train entering from entry signal SIN to inbound path1; IN1PF1
- train on inbound path1 will occupy platform1; PF10T1 - train
on platform1 will occupy outbound pathl; OTINON - train on
outbound path1 will exit the terminal. Similarly, actions NONIN2,
IN2PF2, PF20T2, OT1NON are defined. NONNON action is for no
actions or invalid moves.

Converting a RL policy to heuristics In the approach presented
in the paper, the state-space represents the current occupation of
track resources and the ready-ness of trains entering the junction
or leaving the currently occupied track resources. The action-space
represents which track resources which would be occupied next by
the train for a given state. After running the experiment, we get the
optimal RL policy. In the RL policy, for each state in the state-space
vector, we get an action that will result in the best solution. In turn,
for a given resource occupancy (state), we would get the following
resources to be occupied as a heuristics.

Test Instances: Each data instance consists of 25 homogeneous
trains where each train is having a network entry time determined

by the headway parameter. We assume that all trains are available
at a deterministic constant headway to enter the terminal. The time
between two consecutive trains at station entry is constant. We
generate 21 data instances, independent of each other, by varying
headway in the step of 30 seconds starting from 0 seconds to 600
seconds. In the 0 seconds headway instance, all trains are available
to enter the train at time 0. In the 180 seconds headway instance, a
train is available to enter the station every 180 seconds.

4.3 Experiments

The experiments include generation of train movement plan for a
terminal station with the layout given in Figure 3, using the run-
time data given in Table 1 and the RL model described in section
3.2.

Several interesting questions are posed for analysis, as well as
determining the operating heuristics for a terminal layout. The
experiment aims to find the answers to these questions. These ques-
tions are related to platform allocation, and movement sequencing
are

o If both platforms are free, then which platform should be
allocated first?
e If both platforms are occupied, then which platform should
be vacated first?
o If one platform is free and another occupied, then what
should be done?
— Should the entering train be allocated to the free platform?
— Should the entering train wait for the occupied platform
to be freed?

For comparison purposes, we define an operating heuristic used
in practice. These heuristics are based on the experience and railway
domain know-how of the railway planner and are used for plan-
ning train movement at the CSMT Harbour terminal in day to day
practice. We formalize/derive these heuristics after our discussions
with railway planners.

Operating Heuristics used in practice:

e If both platforms are free and both inbound paths are free,
and a train is ready to enter, then Platform1 should be chosen
first for allocation.
e If both platforms are occupied
— Ifboth trains are ready to depart then the train at Platform2
should be departed before any train is allowed to enter
the terminal

— Else (i.e., only one train is ready to depart) the train ready
to depart should depart immediately

e If one platform is occupied and train at that platform is
ready to depart, then the train ready to depart the terminal
should be allowed to depart before the next incoming train
is allowed to enter the terminal.

We conduct two sets of experiments. The first set of experiments
is to determine the optimal RL policy and determining operating
heuristics for each data instance. The second set of experiments is
to determine a single global RL policy and determining a single set
of learned operating heuristics applicable for all 21 data instances.
For determining the optimal RL policy for each data instance, we
run the proposed RL algorithm on each data instance for 5000
episodes Moreover, find an optimal policy for each data instance. For

Table 2: Output objective (Make-span) values

Head- | Practical | Converge | Converge | Observe
way Global Global Local Best
(sec) (sec) (sec) (sec) (sec)
000 7,458 5,667 5,472 5,472
030 7,458 5,667 5,472 5,472
060 7,458 5,667 5,472 5,472
090 7,458 5,667 5,472 5,472

120 7,458 5,667 5,472 5,472
150 7,458 5,667 5,472 5,472
180 7,458 5,667 5,477 5,477
210 5,510 5,667 5,507 5,507
240 6,180 6,195 6,180 6,180
270 7,693 6,900 6,947 6,900
300 7,756 7,635 7,756 7,620
330 8,446 8,355 8,446 8,340
360 9,136 9,075 9,136 9,060
390 9,826 9,780 9,826 9,780
420 10,515 10,691 10,515 10,515
450 11,220 11,235 11,220 11,220
480 11,940 11,955 11,940 11,940
510 12,660 12,675 12,660 12,660
540 13,380 13,395 13,380 13,380
570 14,100 14,115 14,100 14,100
600 14,820 14,835 14,820 14,820
Total 195,388 182,177 180,741 18031

determining a single global optimal RL policy, we run the proposed
RL algorithm on all 21 data instances for 125000 episodes. For each
episode, a data instance is chosen randomly from the available 21
instances. For both these experiments, we use discounting factor
Y = 0.99 Moreover, gradually decrease € from 1 to 0 with the factor
of 1/TotalEpisodes after each episode, where € is the probability
of choosing random action for a state.

The RL model is implemented in python3.6. All experiments
are conducted on a computer with Intel(R) Core(TM) i5-2520M
processor with 2.5GHz clock speed and 4.0 GB RAM running on
Ubuntu 16.04 LTS.

4.4 Results:

The ’Practical Global’ column of Table 2 shows the objective value
obtained for each data instance using the operating heuristics used
in practice (given in the previous section). The objective values for
"Practical Global’ for headway less than 180 seconds are the same.
Surprisingly this value is higher than the value for the headway of
210 seconds. It may be because practitioners never experienced the
headway less than 210 seconds in practice.

Optimal RL policy for each data instant: The ’Converged
Local’ column of Table 2 shows the objective value obtained for
each data instance for the converged RL policy. The "Best-Observed
Local’ column of Table 2 shows the best objective value observed for
each data instance during the experiment. For headway between 270
seconds to 390 seconds, the RL algorithm does not converge to the
best value of the objective. The objective value for the ’Conversed
Local’ policy is better than or equal to that of the "Practical Global’
policy for all data instances. Although we derive the operating

025-125-000

6600

6400

6200

6000 e & cee crtemmente cefene Ges Samenm = - Pme s = -

Make Span (sec)

5800

5800

o 20000 40000 60000 80000 100000 120000
Iterations (#)

(a) Headway = 0 min

025-125-090

6200 =

6000 e = 0o e eay Colltm csemte © Gume W= @ g - cm 3 -

Make Span (sec)

5800

= T T e - —

5600

o 20000 40000 60000 50000 100000 120000
Herations (#)

(b) Headway = 90 min

025-125-180
77 upatyetasarassnuhs

5650

5625

5600

Make Span (sec)
o
a
=
o

o 20000 40000 60000 80000 100000 120000
Ierations (#)

(c) Headway = 180 min

Figure 4: Learning Curve - Low Headway

heuristics from the optimal RL policy for each data instance, they
are not reported here.

Global RL policy for all instances: The ’Converged Global’
column of Table 2 shows the objective value obtained for the con-
verged global RL policy. The objective value for the converged
global RL policy is better than or equal to the objective values
obtained from the operating heuristics used in practice (given in
column "Practical Global’) for all data instances. For headway be-
tween 270-390 seconds, it is even better than the converged RL
policy for individual data instance. Figure 4, Figure 5, and Figure
6, give the learning curve obtained for respective headway values
while running RL algorithm for obtaining global RL policy for all

025-125-270

7400

7300 -

7200

Make Span (sec)

7100

7000

6900

o 20000 40000 60000 80000 100000 120000
Iterations (#)

(a) Headway = 270 min

025-125-300

7760

7740

7720

7700

7680

Make Span (sec)

7660

7640

7620 -

o 20000 40000 60000 80000 100000 120000
Iterations (#)

(b) Headway = 300 min

025-125-330

8460

8420

8400

Make Span (sec)

8380

8360

8340

o 20000 40000 60000 80000 100000 120000
Iterations (#)

(c) Headway = 330 min

Figure 5: Learning Curve - Medium Headway

data instances. Each sub-figure depicts the objective value for the
given headway at the iteration at which that headway was selected
randomly. The title of each sub-figure represents the number of
trains, the number of iterations in thousands, and the headway
in seconds. The last 5,000 iterations in each sub-figure show the
converged value. The parallel lines in the sub-figures indicate that
the limited number of solutions for the problem at the respective
headway.

We derive global operating heuristics from the global RL policy
obtained. Using these learned heuristics, we derive a timetable for
trains running in the terminal for any given headway. The learned
heuristics give better results than those used in practice, especially

025-125-420
10700

10675 - " et ®ee Ve o et wven. Snas Suna

10650

10625 ® et e mme * Wt B en ABedee e

=
g
2 . ean me -
& 10800
2 - e o=
&
e
® 10575
=
10550 .
10525
10500 - - e WO S O S CEEE—E—
o 20000 40000 80000 80000 100000 120000
Iterations (#)
(a) Headway = 420 min
025-125-510
12674
12672
__ 12670
o
2
E 12668
&
£ 1zess
=
12664
12662
12660 -
o 20000 40000 60000 80000 100000 120000
Iterations (#)
(b) Headway = 510 min
025-125-600
14834
14832
_ 1as30
H
N
S 14828
2
5
A
X 14826
=
14824
14822
14820
o 20000 40000 80000 80000 100000 120000

Ierations (#)

(c) Headway = 600 min

Figure 6: Learning Curve - High Headway

when the headway is low, i.e., when congestion is high. The learned
heuristics are given below, and these heuristics differ from those
used in practice (given in the previous section).

o If both platforms are free and both inbound paths are free,
and a train is ready to enter, then Platform1 should be chosen
first for allocation. (Same as practice)

o If both platforms are occupied
— If both trains are ready to depart, then train at Platform1

should be departed before any train is allowed to enter
the terminal. (Differs from practice)

— Else (i.e., only one train is ready to depart) the train ready
to depart should be departed immediately. (Same as prac-
tice)

o If one platform is occupied and train at that platform is
ready to depart and a train ready to enter the terminal, then
the train ready to enter the terminal should be allowed to
enter before any outgoing train is allowed to depart from
the terminal. (Differs from practice)

Objective values for global RL policy are more than that of the
optimal RL policy for each data instant, except for data instances
with the headway of 270 to 390 seconds, where optimal RL policy
for each data instant did not converge to best observed objective
value.

The total of the objective values for the global RL policy is 1.02%
move compared to the total of the objective values for optimal RL
policy for each instance. From the operational point of view, it is
better to have a single set of operating heuristics than having a
separate operating heuristics for each data instance.

The above approach can also be used to determine the capacity
of the terminal station. Observe that the objective values for both
global RL policy and optimal RL policy for each instance are the
same for headway between 0 seconds to 150 seconds, and it starts
increasing from 180 seconds. It means that the CSMT terminal
station can not handle the headway less than 180 seconds without
delaying the trains at the entry. The CSMT terminal can not handle
more than 20 trains per hour. In other words, the max capacity of
the CSMT terminal station is 20 trains per hour.

5 CONCLUSIONS

We developed a reinforcement learning-based approach for gener-
ating a timetable for trains traversing through a railway terminal.
We demonstrated how the reinforcement learning approach is used
to learn heuristics, which in turn are used to generate a train move-
ment plan. We compared the quality of the plan generated using
rules used in practice and the plan generated by the heuristics
learned using the reinforcement learning approach proposed in this
paper, under different congestion scenarios. Based on the analysis,
we conclude that different operating rules/heuristics are required
to be used under different inter-arrival times (headway), i.e., under
different congestion levels. In lower congestion (higher headway)
situations, both practical rules and RL learned rules performed the
same, but in higher congestion level, RL learned rules performed
better. We also showed that a single global policy could be learned
and used under multiple congestion scenarios. The quality of the
plan generated by the single global policy is inferior compared to
the quality of the plan generated by the different optimal policy for
each data instance by less than 1%.

Future works include testing the Deep-Q-Learning based rein-
forcement learning approach at bigger station networks given in
Salsingikar et al. [22] and Shekhar et al. [23]. Future work would in-
clude exploring route-lock section-release and section-lock section-
release strategy.

ACKNOWLEDGMENTS

We thank Mr. Hardik Meisheri, Dr. Harshad Khadilkar, and Dr.
Siddhartha SenGupta from TCS Research & Innovation unit of Tata
Consultancy Services for their help and guidance during this work.

REFERENCES

[1] X. Cai and C. J. Goh. 1994. A fast heuristic for the train scheduling problem.

2

[7

8

[10

[11

[12

[

—= =

]

Computers and Operations Research 21 (1994), 499-510.

Gabrio Caimi, Martin Fuchsberger, Marco Laumanns, and Marco Liithi. 2012. A
model predictive control approach for discrete-time rescheduling in complex
central railway station areas. Computers & Operations Research 39, 11 (2012),
2578-2593.

Alberto Caprara, Laura Galli, Leo Kroon, Gabor Mardti, and Paolo Toth. 2010.
Robust Train Routing and Online Re-scheduling. In 10th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’10)
(OpenAccess Series in Informatics (OASIcs)), Thomas Erlebach and Marco Liibbecke
(Eds.), Vol. 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 24-33. https://doi.org/10.4230/OASIcs. ATMOS.2010.24

Alberto Caprara, Laura Galli, and Paolo Toth. 2011. Solution of the train plat-
forming problem. Transportation Science 45, 2 (2011), 246-257.

Malachy Carey and Sinead Carville. 2003. Scheduling and platforming trains at
busy complex stations. Transportation Research Part A: Policy and Practice 37, 3
(2003), 195-224.

Partha Chakroborty and Durgesh Vikram. 2008. Optimum assignment of trains
to platforms under partial schedule compliance. Transportation Research Part B:
Methodological 42, 2 (2008), 169-184.

Francesco Corman, Rob MP Goverde, and Andrea D’Ariano. 2009. Rescheduling
dense train traffic over complex station interlocking areas. In Robust and On-
line Large-Scale Optimization, Ravindra Kumar Ahuja, Miohring Rolf H., and
Zaroliagis Christos D. (Eds.). Vol. 5868. Springer, Berlin, Germany, 369-386.
Yong Cui. 2010. Simulation based Hybrid Model for a Partially Automatic Dis-
patching of Railway Operation. PhD Thesis. University of Stuttgart.

Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. 2007. A branch and
bound algorithm for scheduling trains in a railway network. European Journal of
Operational Research 183, 2 (2007), 643-657.

Maged M. Dessouky, Quan Lu, Jiamin Zhao, and Robert C. Leachman. 2006. An
exact solution procedure to determine the optimal dispatching times for complex
rail networks. IIE transactions 38, 2 (2006), 141-152.

Thijs Dewilde, Peter Sels, Dirk Cattrysse, and Pieter Vansteenwegen. 2013. Ro-
bust railway station planning: An interaction between routing, timetabling and
platforming. Journal of Rail Transport Planning and Management 3 (2013), 68-77.
Selim Diindar and Ismail Sahin. 2013. Train re-scheduling with genetic algorithms
and artificial neural networks for single-track railways. Transportation Research

[13

[14]

[15

(17

(18

[19

[20

[21

[22

[24
[25

[26

]

]
]

Part C: Emerging Technology 27 (2013), 1-15. https://doi.org/10.1016/j.trc.2012.
11.001

Wei Fang, Shengxiang Yang, and Xin Yao. 2015. A survey on problem models
and solution approaches to rescheduling in railway networks. IEEE Transactions
on Intelligent Transportation Systems 16, 6 (2015), 2997-3016.

Ingo A Hansen and Jorn Pachl. 2014. Railway Timetabling and Operations: Anal-
ysis, Modelling, Optimisation, Simulation, Performance Evaluation. Europress,
Hamburg, Germany.

Yoichi Hirashima. 2011. A reinforcement learning method for train marshaling
based on movements of locomotive. International Journal of Computer Science 38
(2011), 242-248.

Harshad Khadilkar. 2019. A scalable reinforcement learning algorithm for sched-
uling railway lines. IEEE Transactions on Intelligent Transportation Systems 20, 2
(2019), 727-736.

Harshad Khadilkar, Shripad Salsingikar, and Sudhir Kumar Sinha. 2017. A ma-
chine learning approach for scheduling railway networks. In 7th International
Conference on Railway Operations Modelling and Analysis. International Associa-
tion of Railway Operations Research, IFSTTAR, Lille, France, 302 - 316.
Richard M Lusby, Jesper Larsen, Matthias Ehrgott, and David Ryan. 2011. Railway
track allocation: models and methods. OR Spectrum 33, 4 (2011), 843-883.
Richard M Lusby, Jesper Larsen, Matthias Ehrgott, and David M Ryan. 2013. A
set packing inspired method for real-time junction train routing. Computers &
Operations Research 40, 3 (2013), 713-724.

Paola Pellegrini, Grégory Marliére, and Joaquin Rodriguez. 2014. Optimal train
routing and scheduling for managing traffic perturbations in complex junctions.
Transportation Research Part B: Methodological 59 (2014), 58—80.

Joaquin Rodriguez. 2007. A constraint programming model for real-time train
scheduling at junctions. Transportation Research Part B: Methodological 41, 2
(2007), 231-245.

Shripad Salsingikar, L. Sathishkumar, Narayan Rangaraj, and Aseem Awad. 2017.
Analysis and planning of train movements at a railway junction. In 7th Interna-

tional Conference on Railway Operations Modelling and Analysis. International
Association of Railway Operations Research, IFSTTAR, Lille, France, 541 - 556.

Sudhanshu Shekhar, Abhishek Singh, Madhu N. Belur, and Narayan Rangaraj.
2019. Development of a railway junction simulator for evaluation of control
strategies and capacity utilization optimization. In 2019 Fifth Indian Control
Conference (ICC). 260-265. https://doi.org/10.1109/INDIANCC.2019.8715629
Richard Sutton and Andrew Barto. 2018. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, United States.

Johanna Térnquist. 2006. Railway Traffic Disturbance Management. PhD Thesis.
Blekinge Institute of Technology.

Darja Semrov, Rok Marseti¢, Marijan Zura, Ljupéo Todorovski, and Aleksander
Srdic. 2016. Reinforcement learning approach for train rescheduling on a single-
track railway. Transportation Research Part B: Methodological 86 (2016), 250-267.
https://doi.org/10.1016/j.trb.2016.01.004

https://doi.org/10.4230/OASIcs.ATMOS.2010.24
https://doi.org/10.1016/j.trc.2012.11.001
https://doi.org/10.1016/j.trc.2012.11.001
https://doi.org/10.1109/INDIANCC.2019.8715629
https://doi.org/10.1016/j.trb.2016.01.004

	Abstract
	1 Introduction
	2 Previous Work
	3 Methodology
	3.1 Station Network and Train Movement Modeling
	3.2 Reinforcement Learning model

	4 Case Study
	4.1 Terminal Network Layout
	4.2 Experiment setup
	4.3 Experiments
	4.4 Results:

	5 Conclusions
	Acknowledgments
	References

