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1 INTRODUCTION
Unmanned aerial vehicles (UAVs) are cyber-physical systems that
can be operated autonomously using onboard computers. Owing
to their small size and light weight, UAVs can penetrate into con-
stricted spaces or effortlessly glide over pre-specified geographical
areas, the majority of whichmay possibly be beyond the reach of hu-
mans. However, UAVs still lack the ability to avoid obstacles, which
is a non-trivial task because the obstacles might be so positioned
that avoiding them requires delicate and dexterous movements. To
be able to avoid obstacles, the UAV must be able to perceive the
distance between itself and the obstacles along with other visual
cues such as the shape of the obstacle and it’s height. This crucial
visual information enables a UAV to infer traversable spaces and
obstacles.

Kinect, LIDAR, SONAR, optical flow, and stereo camera sensors
are widely used for depth estimation (see [9]) and hence these can be
potentially used for obstacle avoidance (OA) as well. However, these
sophisticated sensors are expensive and add unnecessary burden
to the UAV in terms of weight as well as consumption of power.
Other sensors, like for example, the monocular camera, is essential
for every UAV application, because, it gives visual information.
The monocular camera is a low-cost sensor which provides RGB
images of the UAV’s ambient environment. In comparison to the
heavy-weight sensors mentioned earlier, a monocular camera is
light-weight. The question then is whether we can use a monocular
camera for depth estimation as well and plausibly for obstacle
avoidance.

Taking cue from how humans learn to avoid obstacles with
limited access to the environment, we propose a deep reinforcement
learning (DRL) method which enables the UAV controller to collect
relevant information from monocular RGB images observed over
time and utilize this information to avoid obstacles dexterously.
Our work based on recurrent neural network (RNN) architecture
with an additional function called Temporal Attention adds a new
dimension to the existing work on UAV obstacle avoidance (see
[1, 8]). Using this architecture the UAV controller learns a control
policy to avoid obstacles.

2 MODEL FORMULATION AND METHOD
The objective of our work is to find a suitable policy for UAV naviga-
tion that avoids obstacles (both stationary and mobile). We propose
a POMDP model ⟨S,A, P,R,Ω,O,γ ⟩ for the OA problem. Here S
is the set of states of the environment, while A is the set of fea-
sible actions. P is the transition probability function that models
the evolution of states based on actions chosen and is defined as

P : S × A × S → [0, 1]. R is the reinforcement or the reward func-
tion defined as R : S × A → R. The reward function serves as
a feedback signal to the UAV for the action chosen. Ω is the set
of observations and an observation o ∈ Ω is an estimate of the
true state s . O : S × A × Ω → [0, 1] is a conditional probability
distribution over Ω, while γ ∈ (0, 1) is the discount factor. At each
time t , the environment state is st ∈ S . The UAV takes an action
at ∈ A which causes the environment to transition to state st+1
with probability P(st+1 |st ,at ). Based on this transition, the UAV
receives an observation ot ∈ Ω which depends on st+1 with prob-
ability O(ot |st+1,at ). The aim is to solve the obstacle avoidance
problem, which translates to the task of finding an optimal policy
π∗ : Ω → A. By determining an optimal policy, the UAV controller
is able to select an action at each time step t that maximizes the
expected sum of discounted rewards over all starting states s , which

is denoted as E
[
∞∑
t=0

γ tR(st ,at )|s0 = s

]
.

The input to our model is the monocular RGB image, without
any depth information. Our model extracts the depth map from
the RGB image which is the observation o for the UAV controller.
The depth map predicted from the RGB image indicates the dis-
tance between the objects and the UAV. Given an observation, the
feasible actions (A) available for the UAV are “go straight”, “turn
right” and “turn left”. The reward function R is designed using the
depth information as Rt = min

(
1, dt−rdσ−rd

)
, where dt is the distance

to the nearest obstacle at time t and depends on the action taken,
rd is the radius of the drone and σ is the threshold distance. In
order to determine the functions P and O, we must be aware of
the structure of the environment and the motion dynamics of the
UAV. In practice, these are impossible to know, since the UAV navi-
gates in unknown, unstructured environments in the presence of
other factors like wind, turbulence etc. So our method, denoted as
DRQN+A [9], learns optimal policy for UAV navigation using deep
Q-Networks [6], which utilizes a neural network parametrized by
weights (w) to approximate the Q-value (denoted asQ(s,a |w)) for a
given state input. Experience replay improves the stability of the al-
gorithm in which experience tuples (s,a, r , s ′) are stored in a replay
memory (D). However, in the UAV obstacle avoidance problem, the
method has access to only the depth map (which is an observation).
In order to better estimate the underlying states and their evolution
we augment DQN with a recurrent architecture, namely LSTM [4].
The recurrent layer integrates the observations over time to better
estimate the underlying states. In addition to LSTM, our architec-
ture utilizes an additional layer known as temporal attention [7].
The temporal attention layer makes the recurrency more effective



by identifying the weights of the past observations in accordance
with their importance on decision-making.

3 EXPERIMENTAL SETUP AND RESULTS
Our proposed method takes as input a RGB image (denoted x ) of the
surrounding environment, extracts a depth map (image) (denotedy)
from the RGB image and provides an optimal direction to steer the
UAV away from obstacles. In order to obtain a depth image from a
RGB image, we utilize conditional generative adversarial network
(cGAN) [5] for the image-to-image translation.
cGAN Training to obtain Depth Images : The proposed con-
ditional GAN is initially trained on a total of 90, 000 RGB-D im-
age pairs collected from the Gazebo simulated environments each
having different characteristics. We simulated a number of indoor
environments which consist of broad and narrow hallways, small
and large enclosed areas with floorings ranging from asphalt to arti-
ficial turf. The simulated environments also contain structured and
unstructured obstacles like humans, traffic cones, tables etc., placed
at random positions and with random orientation. The walls and ob-
stacles with diverse shapes, textures and colours provide abundant
visual information for effective learning. The RGB-D image pairs
are collected using a Kinect sensor mounted on the flying drone in
simulation, covering all possible viewpoints. Further, the dataset
is augmented off-line by random flipping, adding random jitter
and random alteration to the brightness, saturation, contrast and
sharpness. The network is trained on the entire collected dataset
for 20 epochs in batches of size 4. For the learned OA policy to be
effectively transferable to the real physical systems, we degrade the
kinect sensor RGB images with Gaussian blurring, random jitter
and superpixel replace to make the visual information more close
to reality.
DQN Training with LSTM and Temporal Attention : For RL
algorithms to learn an effective collision avoidance policy, the UAV
learning agent must have enough experience of undesirable events
like collision. Training a learning algorithm on a fragile drone in
a physical environment is expensive and hence the performance
of DRL algorithms is usually demonstrated on simulated environ-
ments. In this work, we build and test our UAV collision avoidance
algorithms on the simulated environments used to obtain RGB
images for depth network evaluation. Our method initially trains
the UAV by starting off with simple hallway environments free
of obstacles. Gradually, the environment complexity is increased
by narrowing down the pathways, enclosing the free space and
increasing the density of obstacles. The proposed control network
is trained to learn the observation-action value over the last L ob-
servations (depth images received from the cGAN architecture)
corresponding to the three actions “go straight", “turn left" and
“turn right", respectively.
Experimental Results : We evaluate the performance of our
proposed method which utilizes Deep Recurrent Q-network with
Temporal Attention (DRQN+A) architecture. The performance re-
sults are compared with the baseline DQN [8], D3QN [2] and DRQN
[3]. We also implement two other policies - random and straight.
The random policy picks an action with equal probability for each
observation, while the straight policy always picks the “go straight"

action. The metric used for performance evaluation is the average
number of steps taken until collision with an obstacle. All methods
are trained in 12 different simulated indoor environments compris-
ing of hallways and rooms with obstacles of varying structures and
sizes. The trained models are tested on six simulated environments

Env-1 Env-2 Env-3
Straight 61±16 58±14 76±23
Random 125±84 176±121 113±83
DQN 207±103 229±95 286±142
D3QN 248±109 271±104 297±133

DRQN+A 323±134 342±131 326±156
Table 1: Results indicating the average number of steps taken by
UAV (along with standard deviation) until collision.

which are not used for training, out of which results for three en-
vironments are shown in Table 1. These environments comprise
of enclosed areas with randomly scattered static obstacles of vary-
ing sizes and structures. The first ia a maze-like environment, the
second is small enclosed area having poles in between. The third
environment simulates a cafe-like environment and has 7 human
actors randomly walking inside the cafe.

We analyze performance of DRQN+A for 200 episodes in each
environment. Table 1 indicates the average number of steps the UAV
takes until collision after training. From Table 1, it can be seen that
using our approach, the UAV flies for the maximum number of time
instants until collision. We also observed through experiments that
our designed cGAN depth network had an inference rate of 1.4Hz
on an NVIDIA GeForce GTX 1050 mobile GPU with 8GB RAM and
Intel i7 processor machine, which is quite advantageous for robotic
applications. Additionally, we observed that the average energy
consumption of DRQN+A is 0.0571 Wh/m and 0.0743 Wh/m for
D3QN. The reasoning for this is that in testing we observed that
with our proposed method, the UAV’s “wobbling" motion is highly
reduced when compared to D3QN.
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